1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//! A proc macro to ease development using _Inversion of Control_ patterns in Rust.
//!
//! `entrait` is used to generate a trait from the definition of a regular function.
//! The main use case for this is that other functions may depend upon the trait
//! instead of the concrete implementation, enabling better test isolation.
//!
//! The macro looks like this:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(MyFunction)]
//! fn my_function<D>(deps: &D) {
//! }
//! ```
//!
//! which generates the trait `MyFunction`:
//!
//! ```rust
//! trait MyFunction {
//!     fn my_function(&self);
//! }
//! ```
//!
//! `my_function`'s first and only parameter is `deps` which is generic over some unknown type `D`.
//! This would correspond to the `self` parameter in the trait.
//! But what is this type supposed to be? The trait gets automatically implemented for
//! [::implementation::Impl(T)](https://docs.rs/implementation/latest/implementation/struct.Impl.html):
//!
//! ```rust
//! use implementation::Impl;
//! struct App;
//!
//! #[entrait::entrait(MyFunction)]
//! fn my_function<D>(deps: &D) { // <--------------------.
//! }                             //                      |
//!                               //                      |
//! // Generated:                                         |
//! // trait MyFunction {                                 |
//! //     fn my_function(&self);                         |
//! // }                                                  |
//! //                                                    |
//! // impl<T> MyFunction for ::implementation::Impl<T> { |
//! //     fn my_function(&self) {                        |
//! //         my_function(self) // calls this! ----------´
//! //     }
//! // }
//!
//! let app = Impl::new(App);
//! app.my_function();
//! ```
//!
//! The advantage of this pattern comes into play when a function declares its dependencies, as _trait bounds_:
//!
//!
//! ```rust
//! # use entrait::entrait;
//! # struct App;
//! #[entrait(Foo)]
//! fn foo(deps: &impl Bar) {
//!     deps.bar();
//! }
//!
//! #[entrait(Bar)]
//! fn bar<D>(deps: &D) {
//! }
//! ```
//!
//! The functions may take any number of parameters, but the first one is always considered specially as the "dependency parameter".
//!
//! Functions may also be non-generic, depending directly on the App:
//!
//! ```rust
//! # use entrait::entrait;
//! use implementation::Impl;
//!
//! struct App { something: SomeType };
//! type SomeType = u32;
//!
//! #[entrait(Generic)]
//! fn generic(deps: &impl Concrete) -> SomeType {
//!     deps.concrete()
//! }
//!
//! #[entrait(Concrete)]
//! fn concrete(app: &App) -> SomeType {
//!     app.something
//! }
//!
//! let app = Impl::new(App { something: 42 });
//! assert_eq!(42, app.generic());
//! ```
//!
//! These kinds of functions may be considered "leaves" of a dependency tree.
//!
//! ## "Philosophy"
//! The `entrait` crate is a building block of a design pattern - the _entrait pattern_.
//! The entrait pattern is simply a convenient way to achieve unit testing of business logic.
//!
//! Entrait is not intended for achieving polymorphism. If you want that, you should instead hand-write
//! a trait.
//!
//! _Entrait should only be used to define an abstract computation that has a single
//! implementation in realase mode, but is mockable in test mode._
//!
//! `entrait` does not implement Dependency Injection (DI). DI is a strictly object-oriented concept that will often look awkward in Rust.
//! The author thinks of DI as the "reification of code modules": In a DI-enabled programming environment, code modules are grouped together
//! as _objects_ and other modules may depend upon the _interface_ of such an object by receiving some instance that implements it.
//! When this pattern is applied successively, one ends up with an in-memory dependency graph of high-level modules.
//!
//! `entrait` tries to turn this around by saying that the primary abstraction that is depended upon is a set of _functions_, not a set of code modules.
//!
//! An architectural consequence is that one ends up with _one ubiquitous type_ that represents a running application that implements all
//! these function abstraction traits. But the point is that this is all loosely coupled: Most function definitions themselves do not refer
//! to this god-like type, they only depend upon traits.
//!
//! ## `async` support
//! Since Rust at the time of writing does not natively support async methods in traits, you may opt in to having `#[async_trait]` generated
//! for your trait:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(Foo, async_trait=true)]
//! async fn foo<D>(deps: &D) {
//! }
//! ```
//! This is designed to be forwards compatible with real async fn in traits. When that day comes, you should be able to just remove the `async_trait=true`
//! to get a proper zero-cost future.
//!
//! ## Trait visibility
//! by default, entrait generates a trait that is module-private (no visibility keyword). To change this, just put a visibility
//! specifier before the trait name:
//!
//! ```rust
//! use entrait::*;
//! #[entrait(pub Foo)]   // <-- public trait
//! fn foo<D>(deps: &D) { // <-- private function
//! }
//! ```
//!
//! # Mock support
//!
//! ## Unimock
//! Entrait works best together with [unimock](https://docs.rs/unimock/latest/unimock/), as these two crates have been designed from the start with each other in mind.
//!
//! Unimock exports a single mock struct which can be passed in as parameter to every function that accept a `deps` parameter
//! (given that entrait is used with unimock support everywhere).
//! To enable mocking of entraited functions, they get reified and defined as a type called
//! `Fn` inside a module with the same identifier as the function: `entraited_function::Fn`.
//!
//! Unimock support is enabled by importing entrait from the path `entrait::unimock::*`.
//!
//! ```rust
//! use entrait::unimock::*;
//! use unimock::*;
//!
//! #[entrait(Foo)]
//! fn foo<D>(_: &D) -> i32 {
//!     unimplemented!()
//! }
//! #[entrait(Bar)]
//! fn bar<D>(_: &D) -> i32 {
//!     unimplemented!()
//! }
//!
//! fn my_func(deps: &(impl Foo + Bar)) -> i32 {
//!     deps.foo() + deps.bar()
//! }
//!
//! let mocked_deps = mock([
//!     foo::Fn::each_call(matching!()).returns(40).in_any_order(),
//!     bar::Fn::each_call(matching!()).returns(2).in_any_order(),
//! ]);
//!
//! assert_eq!(42, my_func(&mocked_deps));
//! ```
//!
//! Entrait with unimock supports _unmocking_. This means that the test environment can be _partially mocked!_
//!
//! ```rust
//! use entrait::unimock::*;
//! use unimock::*;
//! use std::any::Any;
//!
//! #[entrait(SayHello)]
//! fn say_hello(deps: &impl FetchPlanetName, planet_id: u32) -> Result<String, ()> {
//!     Ok(format!("Hello {}!", deps.fetch_planet_name(planet_id)?))
//! }
//!
//! #[entrait(FetchPlanetName)]
//! fn fetch_planet_name(deps: &impl FetchPlanet, planet_id: u32) -> Result<String, ()> {
//!     let planet = deps.fetch_planet(planet_id)?;
//!     Ok(planet.name)
//! }
//!
//! pub struct Planet {
//!     name: String
//! }
//!
//! #[entrait(FetchPlanet)]
//! fn fetch_planet(deps: &impl Any, planet_id: u32) -> Result<Planet, ()> {
//!     unimplemented!("This doc test has no access to a database :(")
//! }
//!
//! let hello_string = say_hello(
//!     &spy([
//!         fetch_planet::Fn::each_call(matching!(_))
//!             .answers(|_| Ok(Planet {
//!                 name: "World".to_string(),
//!             }))
//!             .in_any_order(),
//!     ]),
//!     123456,
//! ).unwrap();
//!
//! assert_eq!("Hello World!", hello_string);
//! ```
//!
//!
//! ## mockall
//! If you instead wish to use a more established mocking crate, there is also support for [mockall](https://docs.rs/mockall/latest/mockall/).
//!
//! Just import entrait from `entrait::mockall:*` to have those mock structs autogenerated:
//!
//! ```rust
//! use entrait::mockall::*;
//!
//! #[entrait(Foo)]
//! fn foo<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//!
//! fn my_func(deps: &impl Foo) -> u32 {
//!     deps.foo()
//! }
//!
//! fn main() {
//!     let mut deps = MockFoo::new();
//!     deps.expect_foo().returning(|| 42);
//!     assert_eq!(42, my_func(&deps));
//! }
//! ```
//!
//! ## conditional mock implementations
//! Most often, you will only need to generate mock implementations in test code, and skip this for production code. For this configuration
//! there are more alternative import paths:
//!
//! * `use entrait::unimock_test::*` puts unimock support inside `#[cfg_attr(test, ...)]`.
//! * `use entrait::mockall_test::*` puts mockall support inside `#[cfg_attr(test, ...)]`.
//!
//! # Limitations
//! This section lists known limitations of entrait:
//!
//! ## Cyclic dependency graphs
//! Cyclic dependency graphs are impossible with entrait. In fact, this is not a limit of entrait itself, but with Rust's trait solver. It
//! is not able to prove that a type implements a trait if it needs to prove that it does in order to prove it.
//!
//! While this is a limitation, it is not necessarily a bad one. One might say that a layered application architecture should never contain
//! cycles. If you do need recursive algorithms, you could model this as utility functions outside of the entraited APIs of the application.
//!
//! # Crate compatibility
//! As `entrait` is just a macro, it does not pull in any dependencies besides the code needed to execute the macro.
//! But in order to _compile_ the generated code, some additional dependencies will be needed alongside `entrait`.
//! The following table shows compatible major versions:
//!
//! | `entrait` | `implementation` | `unimock` (optional) | `mockall` (optional) |
//! | --------- | ---------------- | -------------------- | -------------------- |
//! | `0.3`     | `0.1`            | `0.2`                | `0.11`               |
//! | `0.2`     | `-`              | `0.1`                | `0.11`               |
//! | `0.1`     | `-`              | `-`                  | `0.11`               |
//!

#![forbid(unsafe_code)]

pub use entrait_macros::entrait;

/// Unimock shorthand
pub mod unimock {
    /// Re-export of `entrait` with `unimock = true` implied.
    ///
    /// # Example
    ///
    /// ```rust
    /// use entrait::unimock::*;
    /// ```
    pub use entrait_macros::entrait_unimock as entrait;
}

/// Unimock cfg-test-only shorthand
pub mod unimock_test {
    /// Re-export of `entrait` with `unimock = test` implied.
    /// # Example
    ///
    /// ```rust
    /// use entrait::unimock_test::*;
    /// ```
    pub use entrait_macros::entrait_unimock_test as entrait;
}

/// Mockall shorthand
pub mod mockall {
    /// Re-export of `entrait` with `mockall = true` implied.
    ///
    /// # Example
    ///
    /// ```rust
    /// use entrait::mockall::*;
    /// ```
    pub use entrait_macros::entrait_mockall as entrait;
}

/// Mockall test-mode-only shorthand
pub mod mockall_test {
    /// Re-export of `entrait` with `mockall = test` implied.
    ///
    /// # Example
    ///
    /// ```rust
    /// use entrait::mockall_test::*;
    /// ```
    pub use entrait_macros::entrait_mockall_test as entrait;
}