1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
//! The structure for defining non-deterministic finite automata.

use crate::prelude::*;

use crate::alphabet;
use crate::pattern::Pattern;
use crate::state::Transition;
use crate::state;
use crate::symbol::Symbol;
use crate::data::matrix::Matrix;

use std::collections::BTreeSet;
use std::ops::RangeInclusive;



// =============
// === Types ===
// =============

/// Specialized NFA state type.
pub type State = state::State<Nfa>;

/// A state identifier based on a set of states.
///
/// This is used during the NFA -> Dfa transformation, where multiple states can merge together due
/// to the collapsing of epsilon transitions.
pub type StateSetId = BTreeSet<State>;



// =========================================
// === Non-Deterministic Finite Automata ===
// =========================================

/// The definition of a [NFA](https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton) for a
/// given set of symbols, states, and transitions (specifically a NFA with ε-moves).
///
/// A NFA is a finite state automaton that accepts or rejects a given sequence of symbols. In
/// contrast with a DFA, the NFA may transition between states _without_ reading any new symbol
/// through use of
/// [epsilon links](https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton#NFA_with_%CE%B5-moves).
///
/// ```text
///  ┌───┐  'N'  ┌───┐    ┌───┐  'F'  ┌───┐    ┌───┐  'A'  ┌───┐
///  │ 0 │ ----> │ 1 │ -> │ 2 │ ----> │ 3 │ -> │ 3 │ ----> │ 3 │
///  └───┘       └───┘ ε  └───┘       └───┘ ε  └───┘       └───┘
/// ```
#[derive(Clone,Debug,PartialEq,Eq)]
#[allow(missing_docs)]
pub struct Nfa {
    pub        start    : State,
    pub(crate) alphabet : alphabet::Segmentation,
    pub(crate) states   : Vec<state::Data>,
}

impl Nfa {
    /// Constructor.
    pub fn new() -> Self {
        let start    = default();
        let alphabet = default();
        let states   = default();
        Self {start,alphabet,states}.init_start_state()
    }

    /// Initialize the start state of the automaton.
    fn init_start_state(mut self) -> Self {
        let start = self.new_state();
        self[start].export = true;
        self.start = start;
        self
    }

    /// Adds a new state to the NFA and returns its identifier.
    pub fn new_state(&mut self) -> State {
        let id = self.states.len();
        self.states.push(default());
        State::new(id)
    }

    /// Adds a new state to the NFA, marks it as an exported state, and returns its identifier.
    pub fn new_state_exported(&mut self) -> State {
        let state = self.new_state();
        self[state].export = true;
        state
    }

    /// Get a reference to the states for this automaton.
    pub fn states(&self) -> &Vec<state::Data> {
        &self.states
    }

    /// Get a reference to the alphabet for this automaton.
    pub fn alphabet(&self) -> &alphabet::Segmentation {
        &self.alphabet
    }

    /// Creates an epsilon transition between two states.
    ///
    /// Whenever the automaton happens to be in `source` state it can immediately transition to the
    /// `target` state. It is, however, not _required_ to do so.
    pub fn connect(&mut self, source:State, target:State) {
        self[source].epsilon_links.push(target);
    }

    /// Creates an ordinary transition for a range of symbols.
    ///
    /// If any symbol from such range happens to be the input when the automaton is in the `source`
    /// state, it will immediately transition to the `target` state.
    pub fn connect_via(&mut self, source:State, target:State, symbols:&RangeInclusive<Symbol>) {
        self.alphabet.insert(symbols.clone());
        self[source].links.push(Transition::new(symbols.clone(),target));
    }

    // FIXME[WD]: It seems that it should be possible to simplify this function. This would
    // drastically save memory (50-70%):
    // 1. We are always adding epsilon connection on the beginning. This should not be needed, but
    //    if we did it this way, it means there is a corner case probably. To be checked.
    // 2. In other places we have similar things. For example, in `Or` pattern we use epsilon
    //    connections to merge results, but we could theoretically first create the output, and
    //    then expand sub-patterns with the provided output.
    /// Transforms a pattern to connected NFA states by using the algorithm described
    /// [here](https://www.youtube.com/watch?v=RYNN-tb9WxI).
    /// The asymptotic complexity is linear in number of symbols.
    pub fn new_pattern(&mut self, source:State, pattern:impl AsRef<Pattern>) -> State {
        let pattern = pattern.as_ref();
        let current = self.new_state();
        self.connect(source,current);
        let state = match pattern {
            Pattern::Range(range) => {
                let state = self.new_state();
                self.connect_via(current,state,range);
                state
            },
            Pattern::Many(body) => {
                let s1 = self.new_state();
                let s2 = self.new_pattern(s1,body);
                let s3 = self.new_state();
                self.connect(current,s1);
                self.connect(current,s3);
                self.connect(s2,s3);
                self.connect(s3,s1);
                s3
            },
            Pattern::Seq(patterns) => {
                patterns.iter().fold(current,|s,pat| self.new_pattern(s,pat))
            },
            Pattern::Or(patterns) => {
                let states = patterns.iter().map(|pat| self.new_pattern(current,pat)).collect_vec();
                let end    = self.new_state();
                for state in states {
                    self.connect(state,end);
                }
                end
            },
            Pattern::Always => current,
            Pattern::Never  => self.new_state(),
        };
        self[state].export = true;
        state
    }

    /// Transforms a pattern to connected NFA states by using the algorithm described
    /// [here](https://www.youtube.com/watch?v=RYNN-tb9WxI). This function is similar to
    /// `new_pattern`, but it consumes an explicit target state.
    /// The asymptotic complexity is linear in number of symbols.
    pub fn new_pattern_to(&mut self, source:State, target:State, pattern:impl AsRef<Pattern>) {
        let pattern = pattern.as_ref();
        let current = self.new_state();
        self.connect(source,current);
        match pattern {
            Pattern::Range(range) => {
                self.connect_via(current,target,range);
            },
            Pattern::Many(body) => {
                let s1 = self.new_state();
                let s2 = self.new_pattern(s1,body);
                let target = self.new_state();
                self.connect(current,s1);
                self.connect(current,target);
                self.connect(s2,target);
                self.connect(target,s1);
            },
            Pattern::Seq(patterns) => {
                let out = patterns.iter().fold(current,|s,pat| self.new_pattern(s,pat));
                self.connect(out,target)
            },
            Pattern::Or(patterns) => {
                let states = patterns.iter().map(|pat| self.new_pattern(current,pat)).collect_vec();
                for state in states {
                    self.connect(state,target);
                }
            },
            Pattern::Always => {
                self.connect(current,target)
            },
            Pattern::Never => {},
        };
        self[target].export = true;
    }

    /// Merges states that are connected by epsilon links, using an algorithm based on the one shown
    /// [here](https://www.youtube.com/watch?v=taClnxU-nao).
    pub fn eps_matrix(&self) -> Vec<StateSetId> {
        fn fill_eps_matrix
        ( nfa     : &Nfa
        , states  : &mut Vec<StateSetId>
        , visited : &mut Vec<bool>
        , state   : State
        ) {
            let mut state_set = StateSetId::new();
            visited[state.id()] = true;
            state_set.insert(state);
            for &target in &nfa[state].epsilon_links {
                if !visited[target.id()] {
                    fill_eps_matrix(nfa,states,visited,target);
                }
                state_set.insert(target);
                state_set.extend(states[target.id()].iter());
            }
            states[state.id()] = state_set;
        }

        let mut states = vec![StateSetId::new(); self.states.len()];
        for id in 0..self.states.len() {
            let mut visited = vec![false; states.len()];
            fill_eps_matrix(self,&mut states,&mut visited,State::new(id));
        }
        states
    }

    /// Computes a transition matrix `(state, symbol) => state` for the Nfa, ignoring epsilon links.
    pub fn nfa_matrix(&self) -> Matrix<State> {
        let mut matrix = Matrix::new(self.states.len(),self.alphabet.divisions.len());

        for (state_ix, source) in self.states.iter().enumerate() {
            let targets = source.targets(&self.alphabet);
            for (voc_ix, &target) in targets.iter().enumerate() {
                matrix[(state_ix,voc_ix)] = target;
            }
        }
        matrix
    }

    /// Convert the automata to a GraphViz Dot code for the deubgging purposes.
    pub fn as_graphviz_code(&self) -> String {
        let mut out = String::new();
        for (ix,state) in self.states.iter().enumerate() {
            let opts = if state.export { "" } else {
                "[fillcolor=\"#EEEEEE\" fontcolor=\"#888888\"]"
            };
            out += &format!("node_{}[label=\"{}\"]{}\n",ix,ix,opts);
            for link in &state.links {
                out += &format!(
                    "node_{} -> node_{}[label=\"{}\"]\n",ix,link.target.id(),link.display_symbols()
                );
            }
            for link in &state.epsilon_links {
                out += &format!("node_{} -> node_{}[style=dashed]\n",ix,link.id());
            }
        }
        let opts = "node [shape=circle style=filled fillcolor=\"#4385f5\" fontcolor=\"#FFFFFF\" \
        color=white penwidth=5.0 margin=0.1 width=0.5 height=0.5 fixedsize=true]";
        format!("digraph G {{\n{}\n{}\n}}\n",opts,out)
    }
}

impl Default for Nfa {
    fn default() -> Self {
        Self::new()
    }
}

impl Index<State> for Nfa {
    type Output = state::Data;
    fn index(&self, state:State) -> &Self::Output {
        &self.states[state.id()]
    }
}

impl IndexMut<State> for Nfa {
    fn index_mut(&mut self, state:State) -> &mut Self::Output {
        &mut self.states[state.id()]
    }
}



// ===========
// == Tests ==
// ===========

#[cfg(test)]
pub mod tests {
    use super::*;

    // === Test Utilities ===

    #[allow(missing_docs)]
    #[derive(Clone,Debug,Default,PartialEq)]
    pub struct NfaTest {
        pub nfa               : Nfa,
        pub start_state_id    : State,
        pub pattern_state_ids : Vec<State>,
        pub end_state_id      : State,
        pub callbacks         : HashMap<State,String>,
        pub names             : HashMap<State,String>,
    }
    #[allow(missing_docs)]
    impl NfaTest {
        pub fn make(patterns:Vec<Pattern>) -> Self {
            let mut nfa               = Nfa::default();
            let start_state_id        = nfa.start;
            let mut pattern_state_ids = vec![];
            let end_state_id          = nfa.new_state_exported();
            for pattern in patterns {
                let id = nfa.new_pattern(start_state_id,&pattern);
                pattern_state_ids.push(id);
                nfa.connect(id,end_state_id);
            }
            let callbacks = default();
            let names     = default();
            Self{nfa,start_state_id,pattern_state_ids,end_state_id,callbacks,names}
        }

        pub fn make_rules(rules:Vec<Rule>) -> Self {
            let mut nfa                    = Nfa::default();
            let start_state_id             = nfa.start;
            let mut pattern_state_ids      = vec![];
            let end_state_id               = nfa.new_state_exported();
            let mut callbacks:HashMap<_,_> = default();
            let mut names:HashMap<_,_>     = default();
            for rule in rules {
                let id = nfa.new_pattern(start_state_id,&rule.pattern);
                callbacks.insert(id,rule.callback.clone());
                names.insert(id,rule.name.clone());
                pattern_state_ids.push(id);
                nfa.connect(id,end_state_id);
            }
            Self{nfa,start_state_id,pattern_state_ids,end_state_id,callbacks,names}
        }

        pub fn callback(&self, state:State) -> Option<&String> {
            self.callbacks.get(&state)
        }

        pub fn name(&self, state:State) -> Option<&String> {
            self.names.get(&state)
        }

        pub fn id(id:usize) -> State {
            State::new(id)
        }

        pub fn has_transition(&self, trigger:RangeInclusive<Symbol>, target:State) -> bool {
            self.states.iter().any(|r| r.links().iter().find(|transition | {
                    (transition.symbols == trigger) && transition.target == target
                }).is_some())
        }

        pub fn has_epsilon(&self, from:State, to:State) -> bool {
            self.states.iter().enumerate().fold(false,|l,(ix,r)| {
                let state_has = ix == from.id() && r.epsilon_links().iter().find(|ident| {
                    **ident == to
                }).is_some();
                l || state_has
            })
        }
    }
    impl Deref for NfaTest {
        type Target = Nfa;

        fn deref(&self) -> &Self::Target {
            &self.nfa
        }
    }

    #[allow(missing_docs)]
    #[derive(Clone,Debug,PartialEq)]
    pub struct Rule {
        pattern : Pattern,
        callback : String,
        name : String
    }
    #[allow(missing_docs)]
    impl Rule {
        pub fn new(pattern:&Pattern, callback:impl Str, name:impl Str) -> Rule {
            let pattern  = pattern.clone();
            let callback = callback.into();
            let name     = name.into();
            Rule{pattern,callback,name}
        }
    }


    // === The Automata ===

    pub fn pattern_range() -> NfaTest {
        let pattern = Pattern::range('a'..='z');
        NfaTest::make(vec![pattern])
    }

    pub fn pattern_or() -> NfaTest {
        let pattern = Pattern::char('a') | Pattern::char('d');
        NfaTest::make(vec![pattern])
    }

    pub fn pattern_seq() -> NfaTest {
        let pattern = Pattern::char('a') >> Pattern::char('d');
        NfaTest::make(vec![pattern])
    }

    pub fn pattern_many() -> NfaTest {
        let pattern = Pattern::char('a').many();
        NfaTest::make(vec![pattern])
    }

    pub fn pattern_always() -> NfaTest {
        let pattern = Pattern::always();
        NfaTest::make(vec![pattern])
    }

    pub fn pattern_never() -> NfaTest {
        let pattern = Pattern::never();
        NfaTest::make(vec![pattern])
    }

    pub fn simple_rules() -> NfaTest {
        let a   = Pattern::char('a');
        let b   = Pattern::char('b');
        let ab  = &a >> &b;
        NfaTest::make(vec![a,ab])
    }

    pub fn complex_rules() -> NfaTest {
        let a_word        = Pattern::char('a').many1();
        let b_word        = Pattern::char('b').many1();
        let space         = Pattern::char(' ');
        let spaced_a_word = &space >> &a_word;
        let spaced_b_word = &space >> &b_word;
        let any           = Pattern::any();
        let end           = Pattern::eof();
        NfaTest::make(vec![spaced_a_word,spaced_b_word,end,any])
    }

    pub fn named_rules() -> NfaTest {
        let a_word = Pattern::char('a').many1();
        let b_word = Pattern::char('b').many1();
        let rules = vec![
            Rule::new(&a_word,"self.on_a_word(reader)","rule_1"),
            Rule::new(&b_word,"self.on_b_word(reader)","rule_2"),
        ];
        NfaTest::make_rules(rules)
    }


    // === The Tests ===

    #[test]
    fn nfa_pattern_range() {
        let nfa = pattern_range();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(123u64)));
        assert_eq!(nfa.states.len(),4);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('z'),nfa.pattern_state_ids[0]));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_pattern_or() {
        let nfa = pattern_or();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(98u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(100u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(101u64)));
        assert_eq!(nfa.states.len(),8);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(NfaTest::id(2),NfaTest::id(3)));
        assert!(nfa.has_epsilon(NfaTest::id(2),NfaTest::id(5)));
        assert!(nfa.has_epsilon(NfaTest::id(6),nfa.pattern_state_ids[0]));
        assert!(nfa.has_epsilon(NfaTest::id(4),nfa.pattern_state_ids[0]));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(4)));
        assert!(nfa.has_transition(Symbol::from('d')..=Symbol::from('d'),NfaTest::id(6)));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_pattern_seq() {
        let nfa = pattern_seq();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(98u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(100u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(101u64)));
        assert_eq!(nfa.states.len(),7);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(NfaTest::id(2),NfaTest::id(3)));
        assert!(nfa.has_epsilon(NfaTest::id(4),NfaTest::id(5)));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(4)));
        assert!(nfa.has_transition(Symbol::from('d')..=Symbol::from('d'),NfaTest::id(6)));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_pattern_many() {
        let nfa = pattern_many();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(98u64)));
        assert_eq!(nfa.states.len(),7);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(NfaTest::id(2),NfaTest::id(3)));
        assert!(nfa.has_epsilon(NfaTest::id(3),NfaTest::id(4)));
        assert!(nfa.has_epsilon(NfaTest::id(5),nfa.pattern_state_ids[0]));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],NfaTest::id(3)));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(5)));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_pattern_always() {
        let nfa = pattern_always();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert_eq!(nfa.states.len(),3);
        assert!(nfa.has_epsilon(nfa.start_state_id,nfa.pattern_state_ids[0]));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_pattern_never() {
        let nfa = pattern_never();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert_eq!(nfa.states.len(),4);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(NfaTest::id(3),nfa.end_state_id));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_simple_rules() {
        let nfa = simple_rules();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(98u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(99u64)));
        assert_eq!(nfa.states.len(),9);
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(2)));
        assert!(nfa.has_epsilon(nfa.start_state_id,NfaTest::id(4)));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[0],nfa.end_state_id));
        assert!(nfa.has_epsilon(NfaTest::id(4),NfaTest::id(5)));
        assert!(nfa.has_epsilon(NfaTest::id(6),NfaTest::id(7)));
        assert!(nfa.has_epsilon(nfa.pattern_state_ids[1],nfa.end_state_id));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),nfa.pattern_state_ids[0]));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(6)));
        assert!(nfa.has_transition(Symbol::from('b')..=Symbol::from('b'),nfa.pattern_state_ids[1]));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.pattern_state_ids[1]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_complex_rules() {
        let nfa = complex_rules();

        assert!(nfa.alphabet.divisions().contains(&Symbol::from(0u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(32u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(33u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(97u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(98u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::from(99u64)));
        assert!(nfa.alphabet.divisions().contains(&Symbol::eof()));
        assert_eq!(nfa.states.len(),26);
        assert!(nfa.has_transition(Symbol::from(' ')..=Symbol::from(' '),NfaTest::id(4)));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(6)));
        assert!(nfa.has_transition(Symbol::from('a')..=Symbol::from('a'),NfaTest::id(10)));
        assert!(nfa.has_transition(Symbol::from(' ')..=Symbol::from(' '),NfaTest::id(14)));
        assert!(nfa.has_transition(Symbol::from('b')..=Symbol::from('b'),NfaTest::id(16)));
        assert!(nfa.has_transition(Symbol::from('b')..=Symbol::from('b'),NfaTest::id(20)));
        assert!(nfa.has_transition(Symbol::eof()..=Symbol::eof(),nfa.pattern_state_ids[2]));
        assert!(nfa.has_transition(Symbol::null()..=Symbol::eof(),nfa.pattern_state_ids[3]));
        assert!(nfa[nfa.start_state_id].export);
        assert!(nfa[nfa.pattern_state_ids[0]].export);
        assert!(nfa[nfa.pattern_state_ids[1]].export);
        assert!(nfa[nfa.pattern_state_ids[2]].export);
        assert!(nfa[nfa.pattern_state_ids[3]].export);
        assert!(nfa[nfa.end_state_id].export);
    }

    #[test]
    fn nfa_named_rules() {
        let nfa = named_rules();

        assert_eq!(nfa.states.len(),18);
        for (ix, _) in nfa.states.iter().enumerate() {
            let state_id = State::new(ix);
            if nfa.pattern_state_ids.contains(&state_id) {
                assert!(nfa.name(state_id).is_some());
                assert!(nfa.callback(state_id).is_some());
            } else {
                assert!(nfa.name(state_id).is_none());
                assert!(nfa.callback(state_id).is_none());
            }
        }
        assert_eq!(nfa.name(nfa.pattern_state_ids[0]),Some(&("rule_1".to_string())));
        assert_eq!(
            nfa.callback(nfa.pattern_state_ids[0]),
            Some(&("self.on_a_word(reader)".to_string()))
        );
        assert_eq!(nfa.name(nfa.pattern_state_ids[1]),Some(&("rule_2".to_string())));
        assert_eq!(
            nfa.callback(nfa.pattern_state_ids[1]),
            Some(&("self.on_b_word(reader)".to_string()))
        );
    }
}