1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! The structure for defining deterministic finite automata.

use crate::prelude::*;

use crate::symbol::Symbol;
use crate::alphabet;
use crate::state;
use crate::data::matrix::Matrix;
use crate::nfa;
use crate::nfa::Nfa;



// =============
// === Types ===
// =============

/// Specialized DFA state type.
pub type State = state::State<Dfa>;



// =====================================
// === Deterministic Finite Automata ===
// =====================================

/// The definition of a [DFA](https://en.wikipedia.org/wiki/Deterministic_finite_automaton) for a
/// given set of symbols, states, and transitions.
///
/// A DFA is a finite state automaton that accepts or rejects a given sequence of symbols by
/// executing on a sequence of states _uniquely_ determined by the sequence of input symbols.
///
/// ```text
///  ┌───┐  'D'  ┌───┐  'F'  ┌───┐  'A'  ┌───┐
///  │ 0 │ ----> │ 1 │ ----> │ 2 │ ----> │ 3 │
///  └───┘       └───┘       └───┘       └───┘
/// ```
#[derive(Clone,Debug,Default,Eq,PartialEq)]
pub struct Dfa {
    /// A set of disjoint intervals over the allowable input alphabet.
    pub alphabet : alphabet::SealedSegmentation,
    /// The transition matrix for the Dfa.
    ///
    /// It represents a function of type `(state, symbol) -> state`, returning the identifier for
    /// the new state.
    ///
    /// For example, the transition matrix for an automaton that accepts the language
    /// `{"A" | "B"}*"` would appear as follows, with `-` denoting the invalid state. The leftmost
    /// column encodes the input state, while the topmost row encodes the input symbols.
    ///
    /// |   | A | B |
    /// |:-:|:-:|:-:|
    /// | 0 | 1 | - |
    /// | 1 | - | 0 |
    ///
    pub links : Matrix<State>,
    /// For each DFA state contains a list of NFA states it was constructed from.
    pub sources : Vec<Vec<nfa::State>>,
}

impl Dfa {
    /// The start state of the automata.
    pub const START_STATE : State = State::new(0);
}

impl Dfa {
    /// Simulate the DFA transition with the provided input symbol.
    pub fn next_state(&self, current_state:State, symbol:&Symbol) -> State {
        let ix = self.alphabet.index_of_symbol(&symbol);
        self.links.safe_index(current_state.id(),ix).unwrap_or_default()
    }

    /// Convert the automata to GraphViz Dot code for the deubgging purposes.
    pub fn as_graphviz_code(&self) -> String {
        let mut out = String::new();
        for row in 0 .. self.links.rows {
            out += &format!("node_{}[label=\"{}\"]\n",row,row);
            for column in 0 .. self.links.columns {
                let state = self.links[(row,column)];
                if !state.is_invalid() {
                    out += &format!("node_{} -> node_{}\n",row,state.id());
                }
            }
        }
        let opts = "node [shape=circle style=filled fillcolor=\"#4385f5\" fontcolor=\"#FFFFFF\" \
                    color=white penwidth=5.0 margin=0.1 width=0.5 height=0.5 fixedsize=true]";
        format!("digraph G {{\n{}\n{}\n}}\n",opts,out)
    }
}


// === Trait Impls ===

impl From<Vec<Vec<usize>>> for Matrix<State> {
    fn from(input:Vec<Vec<usize>>) -> Self {
        let rows       = input.len();
        let columns    = if rows == 0 {0} else {input[0].len()};
        let mut matrix = Self::new(rows,columns);
        for row in 0..rows {
            for column in 0..columns {
                matrix[(row,column)] = State::new(input[row][column]);
            }
        }
        matrix
    }
}



// ===================
// === Conversions ===
// ===================

impl From<&Nfa> for Dfa {
    /// Transforms an Nfa into a Dfa, based on the algorithm described
    /// [here](https://www.youtube.com/watch?v=taClnxU-nao).
    /// The asymptotic complexity is quadratic in number of states.
    fn from(nfa:&Nfa) -> Self {
        let     nfa_mat     = nfa.nfa_matrix();
        let     eps_mat     = nfa.eps_matrix();
        let mut dfa_mat     = Matrix::new(0,nfa.alphabet.divisions.len());
        let mut dfa_eps_ixs = Vec::<nfa::StateSetId>::new();
        let mut dfa_eps_map = HashMap::<nfa::StateSetId,State>::new();

        dfa_eps_ixs.push(eps_mat[0].clone());
        dfa_eps_map.insert(eps_mat[0].clone(),Dfa::START_STATE);

        let mut i = 0;
        while i < dfa_eps_ixs.len()  {
            dfa_mat.new_row();
            for voc_ix in 0..nfa.alphabet.divisions.len() {
                let mut eps_set = nfa::StateSetId::new();
                for &eps_ix in &dfa_eps_ixs[i] {
                    let tgt = nfa_mat[(eps_ix.id(),voc_ix)];
                    if tgt != nfa::State::INVALID {
                        eps_set.extend(eps_mat[tgt.id()].iter());
                    }
                }
                if !eps_set.is_empty() {
                    dfa_mat[(i,voc_ix)] = match dfa_eps_map.get(&eps_set) {
                        Some(&id) => id,
                        None => {
                            let id = State::new(dfa_eps_ixs.len());
                            dfa_eps_ixs.push(eps_set.clone());
                            dfa_eps_map.insert(eps_set,id);
                            id
                        },
                    };
                }
            }
            i += 1;
        }

        let mut sources = vec![];
        for epss in dfa_eps_ixs.into_iter() {
            sources.push(epss.into_iter().filter(|state| nfa[*state].export).collect_vec());
        }

        let alphabet = (&nfa.alphabet).into();
        let links    = dfa_mat;
        Dfa {alphabet,links,sources}
    }
}



// =============
// === Tests ===
// =============

#[cfg(test)]
pub mod tests {
    extern crate test;
    use super::*;
    use crate::nfa;
    use test::Bencher;
    use crate::nfa::tests::NfaTest;


    // === Utilities ===

    fn invalid() -> usize {
        State::INVALID.id()
    }

    fn assert_same_alphabet(dfa:&Dfa, nfa:&Nfa) {
        assert_eq!(dfa.alphabet,nfa.alphabet.seal());
    }

    fn assert_same_matrix(dfa:&Dfa, expected:&Matrix<State>) {
        assert_eq!(dfa.links,*expected);
    }

    fn get_name<'a>(nfa:&'a NfaTest, dfa:&Dfa, state:State) -> Option<&'a String> {
        let sources = &dfa.sources[state.id()];
        let mut result = None;
        for source in sources.iter() {
            let name = nfa.name(*source);
            if name.is_some() {
                result = name;
                break;
            }
        }
        result
    }

    fn make_state(ix:usize) -> State {
        State::new(ix)
    }


    // === The Tests ===

    #[test]
    fn dfa_pattern_range() {
        let nfa = nfa::tests::pattern_range();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid() , 1         , invalid()],
                vec![invalid() , invalid() , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_pattern_or() {
        let nfa = nfa::tests::pattern_or();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid() , 1         , invalid() , 2         , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_pattern_seq() {
        let nfa = nfa::tests::pattern_seq();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid() , 1         , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , 2         , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_pattern_many() {
        let nfa = nfa::tests::pattern_many();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid() , 1 , invalid()],
                vec![invalid() , 1 , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_pattern_always() {
        let nfa = nfa::tests::pattern_always();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid()]
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_pattern_never() {
        let nfa = nfa::tests::pattern_never();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid()]
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_simple_rules() {
        let nfa = nfa::tests::simple_rules();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![invalid() , 1         , invalid() , invalid()],
                vec![invalid() , invalid() , 2         , invalid()],
                vec![invalid() , invalid() , invalid() , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_complex_rules() {
        let nfa = nfa::tests::complex_rules();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa,&nfa);
        let expected = Matrix::from(
            vec![
                vec![1         , 2         , 1         , 1         , 1         , 1         , 3        ],
                vec![invalid() , invalid() , invalid() , invalid() , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , 4         , 5         , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , 6         , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , 7         , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , 6         , invalid() , invalid() , invalid()],
                vec![invalid() , invalid() , invalid() , invalid() , 7         , invalid() , invalid()],
            ]
        );
        assert_same_matrix(&dfa,&expected);
    }

    #[test]
    fn dfa_named_rules() {
        let nfa = nfa::tests::named_rules();
        let dfa = Dfa::from(&nfa.nfa);
        assert_same_alphabet(&dfa, &nfa);
        assert_eq!(dfa.sources.len(),5);
        assert_eq!(get_name(&nfa,&dfa,make_state(0)),None);
        assert_eq!(get_name(&nfa,&dfa,make_state(1)),Some(&String::from("rule_1")));
        assert_eq!(get_name(&nfa,&dfa,make_state(2)),Some(&String::from("rule_2")));
        assert_eq!(get_name(&nfa,&dfa,make_state(3)),Some(&String::from("rule_1")));
        assert_eq!(get_name(&nfa,&dfa,make_state(4)),Some(&String::from("rule_2")));
    }

    // === The Benchmarks ===

    #[bench]
    fn bench_to_dfa_pattern_range(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_range().nfa))
    }

    #[bench]
    fn bench_to_dfa_pattern_or(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_or().nfa))
    }

    #[bench]
    fn bench_to_dfa_pattern_seq(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_seq().nfa))
    }

    #[bench]
    fn bench_to_dfa_pattern_many(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_many().nfa))
    }

    #[bench]
    fn bench_to_dfa_pattern_always(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_always().nfa))
    }

    #[bench]
    fn bench_to_dfa_pattern_never(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::pattern_never().nfa))
    }

    #[bench]
    fn bench_to_dfa_simple_rules(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::simple_rules().nfa))
    }

    #[bench]
    fn bench_to_dfa_complex_rules(bencher:&mut Bencher) {
        bencher.iter(|| Dfa::from(&nfa::tests::complex_rules().nfa))
    }
}