ena/unify/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Union-find implementation. The main type is `UnificationTable`.
//!
//! You can define your own type for the *keys* in the table, but you
//! must implement `UnifyKey` for that type. The assumption is that
//! keys will be newtyped integers, hence we require that they
//! implement `Copy`.
//!
//! Keys can have values associated with them. The assumption is that
//! these values are cheaply cloneable (ideally, `Copy`), and some of
//! the interfaces are oriented around that assumption. If you just
//! want the classical "union-find" algorithm where you group things
//! into sets, use the `Value` type of `()`.
//!
//! When you have keys with non-trivial values, you must also define
//! how those values can be merged. As part of doing this, you can
//! define the "error" type to return on error; if errors are not
//! possible, use `NoError` (an uninstantiable struct). Using this
//! type also unlocks various more ergonomic methods (e.g., `union()`
//! in place of `unify_var_var()`).
//!
//! The best way to see how it is used is to read the `tests.rs` file;
//! search for e.g. `UnitKey`.
use std::fmt::Debug;
use std::marker;
use std::ops::Range;
use snapshot_vec::{self as sv, UndoLog};
use undo_log::{UndoLogs, VecLog};
mod backing_vec;
pub use self::backing_vec::{
Delegate, InPlace, UnificationStore, UnificationStoreBase, UnificationStoreMut,
};
#[cfg(feature = "persistent")]
pub use self::backing_vec::Persistent;
#[cfg(test)]
mod tests;
/// This trait is implemented by any type that can serve as a type
/// variable. We call such variables *unification keys*. For example,
/// this trait is implemented by `IntVid`, which represents integral
/// variables.
///
/// Each key type has an associated value type `V`. For example, for
/// `IntVid`, this is `Option<IntVarValue>`, representing some
/// (possibly not yet known) sort of integer.
///
/// Clients are expected to provide implementations of this trait; you
/// can see some examples in the `test` module.
pub trait UnifyKey: Copy + Clone + Debug + PartialEq {
type Value: UnifyValue;
fn index(&self) -> u32;
fn from_index(u: u32) -> Self;
fn tag() -> &'static str;
/// You should return first the key that should be used as root,
/// then the other key (that will then point to the new root).
///
/// NB. The only reason to implement this method is if you want to
/// control what value is returned from `find()`. In general, it
/// is better to let the unification table determine the root,
/// since overriding the rank can cause execution time to increase
/// dramatically.
#[allow(unused_variables)]
fn order_roots(
a: Self,
a_value: &Self::Value,
b: Self,
b_value: &Self::Value,
) -> Option<(Self, Self)> {
None
}
}
/// Trait implemented for **values** associated with a unification
/// key. This trait defines how to merge the values from two keys that
/// are unioned together. This merging can be fallible. If you attempt
/// to union two keys whose values cannot be merged, then the error is
/// propagated up and the two keys are not unioned.
///
/// This crate provides implementations of `UnifyValue` for `()`
/// (which is infallible) and `Option<T>` (where `T: UnifyValue`). The
/// option implementation merges two sum-values using the `UnifyValue`
/// implementation of `T`.
///
/// See also `EqUnifyValue`, which is a convenience trait for cases
/// where the "merge" operation succeeds only if the two values are
/// equal.
pub trait UnifyValue: Clone + Debug {
/// Defines the type to return when merging of two values fails.
/// If merging is infallible, use the special struct `NoError`
/// found in this crate, which unlocks various more convenient
/// methods on the unification table.
type Error;
/// Given two values, produce a new value that combines them.
/// If that is not possible, produce an error.
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error>;
}
/// A convenient helper for unification values which must be equal or
/// else an error occurs. For example, if you are unifying types in a
/// simple functional language, this may be appropriate, since (e.g.)
/// you can't unify a type variable bound to `int` with one bound to
/// `float` (but you can unify two type variables both bound to
/// `int`).
///
/// Any type which implements `EqUnifyValue` automatially implements
/// `UnifyValue`; if the two values are equal, merging is permitted.
/// Otherwise, the error `(v1, v2)` is returned, where `v1` and `v2`
/// are the two unequal values.
pub trait EqUnifyValue: Eq + Clone + Debug {}
impl<T: EqUnifyValue> UnifyValue for T {
type Error = (T, T);
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
if value1 == value2 {
Ok(value1.clone())
} else {
Err((value1.clone(), value2.clone()))
}
}
}
/// A struct which can never be instantiated. Used
/// for the error type for infallible cases.
#[derive(Debug)]
pub struct NoError {
_dummy: (),
}
/// Value of a unification key. We implement Tarjan's union-find
/// algorithm: when two keys are unified, one of them is converted
/// into a "redirect" pointing at the other. These redirects form a
/// DAG: the roots of the DAG (nodes that are not redirected) are each
/// associated with a value of type `V` and a rank. The rank is used
/// to keep the DAG relatively balanced, which helps keep the running
/// time of the algorithm under control. For more information, see
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
#[derive(PartialEq, Clone, Debug)]
pub struct VarValue<K: UnifyKey> {
parent: K, // if equal to self, this is a root
value: K::Value, // value assigned (only relevant to root)
rank: u32, // max depth (only relevant to root)
}
/// Table of unification keys and their values. You must define a key type K
/// that implements the `UnifyKey` trait. Unification tables can be used in two-modes:
///
/// - in-place (`UnificationTable<InPlace<K>>` or `InPlaceUnificationTable<K>`):
/// - This is the standard mutable mode, where the array is modified
/// in place.
/// - To do backtracking, you can employ the `snapshot` and `rollback_to`
/// methods.
/// - persistent (`UnificationTable<Persistent<K>>` or `PersistentUnificationTable<K>`):
/// - In this mode, we use a persistent vector to store the data, so that
/// cloning the table is an O(1) operation.
/// - This implies that ordinary operations are quite a bit slower though.
/// - Requires the `persistent` feature be selected in your Cargo.toml file.
#[derive(Clone, Debug, Default)]
pub struct UnificationTable<S: UnificationStoreBase> {
/// Indicates the current value of each key.
values: S,
}
pub type UnificationStorage<K> = Vec<VarValue<K>>;
pub type UnificationTableStorage<K> = UnificationTable<InPlace<K, UnificationStorage<K>, ()>>;
/// A unification table that uses an "in-place" vector.
#[allow(type_alias_bounds)]
pub type InPlaceUnificationTable<
K: UnifyKey,
V: sv::VecLike<Delegate<K>> = Vec<VarValue<K>>,
L = VecLog<UndoLog<Delegate<K>>>,
> = UnificationTable<InPlace<K, V, L>>;
/// A unification table that uses a "persistent" vector.
#[cfg(feature = "persistent")]
#[allow(type_alias_bounds)]
pub type PersistentUnificationTable<K: UnifyKey> = UnificationTable<Persistent<K>>;
/// At any time, users may snapshot a unification table. The changes
/// made during the snapshot may either be *committed* or *rolled back*.
pub struct Snapshot<S: UnificationStore> {
// Link snapshot to the unification store `S` of the table.
marker: marker::PhantomData<S>,
snapshot: S::Snapshot,
}
impl<K: UnifyKey> VarValue<K> {
fn new_var(key: K, value: K::Value) -> VarValue<K> {
VarValue::new(key, value, 0)
}
fn new(parent: K, value: K::Value, rank: u32) -> VarValue<K> {
VarValue {
parent: parent, // this is a root
value: value,
rank: rank,
}
}
fn redirect(&mut self, to: K) {
self.parent = to;
}
fn root(&mut self, rank: u32, value: K::Value) {
self.rank = rank;
self.value = value;
}
}
impl<K> UnificationTableStorage<K>
where
K: UnifyKey,
{
/// Creates a `UnificationTable` using an external `undo_log`, allowing mutating methods to be
/// called if `L` does not implement `UndoLogs`
pub fn with_log<'a, L>(
&'a mut self,
undo_log: L,
) -> UnificationTable<InPlace<K, &'a mut UnificationStorage<K>, L>>
where
L: UndoLogs<sv::UndoLog<Delegate<K>>>,
{
UnificationTable {
values: InPlace {
values: self.values.values.with_log(undo_log),
},
}
}
}
// We can't use V:LatticeValue, much as I would like to,
// because frequently the pattern is that V=Option<U> for some
// other type parameter U, and we have no way to say
// Option<U>:LatticeValue.
impl<S: UnificationStoreBase + Default> UnificationTable<S> {
pub fn new() -> Self {
Self::default()
}
}
impl<S: UnificationStore> UnificationTable<S> {
/// Starts a new snapshot. Each snapshot must be either
/// rolled back or committed in a "LIFO" (stack) order.
pub fn snapshot(&mut self) -> Snapshot<S> {
Snapshot {
marker: marker::PhantomData::<S>,
snapshot: self.values.start_snapshot(),
}
}
/// Reverses all changes since the last snapshot. Also
/// removes any keys that have been created since then.
pub fn rollback_to(&mut self, snapshot: Snapshot<S>) {
debug!("{}: rollback_to()", S::tag());
self.values.rollback_to(snapshot.snapshot);
}
/// Commits all changes since the last snapshot. Of course, they
/// can still be undone if there is a snapshot further out.
pub fn commit(&mut self, snapshot: Snapshot<S>) {
debug!("{}: commit()", S::tag());
self.values.commit(snapshot.snapshot);
}
/// Returns the keys of all variables created since the `snapshot`.
pub fn vars_since_snapshot(&self, snapshot: &Snapshot<S>) -> Range<S::Key> {
let range = self.values.values_since_snapshot(&snapshot.snapshot);
S::Key::from_index(range.start as u32)..S::Key::from_index(range.end as u32)
}
}
impl<S: UnificationStoreBase> UnificationTable<S> {
/// Returns the number of keys created so far.
pub fn len(&self) -> usize {
self.values.len()
}
/// Obtains the current value for a particular key.
/// Not for end-users; they can use `probe_value`.
fn value(&self, key: S::Key) -> &VarValue<S::Key> {
&self.values[key.index() as usize]
}
}
impl<S: UnificationStoreMut> UnificationTable<S> {
/// Creates a fresh key with the given value.
pub fn new_key(&mut self, value: S::Value) -> S::Key {
let len = self.values.len();
let key: S::Key = UnifyKey::from_index(len as u32);
self.values.push(VarValue::new_var(key, value));
debug!("{}: created new key: {:?}", S::tag(), key);
key
}
/// Reserve memory for `num_new_keys` to be created. Does not
/// actually create the new keys; you must then invoke `new_key`.
pub fn reserve(&mut self, num_new_keys: usize) {
self.values.reserve(num_new_keys);
}
/// Clears all unifications that have been performed, resetting to
/// the initial state. The values of each variable are given by
/// the closure.
pub fn reset_unifications(&mut self, mut value: impl FnMut(S::Key) -> S::Value) {
self.values.reset_unifications(|i| {
let key = UnifyKey::from_index(i as u32);
let value = value(key);
VarValue::new_var(key, value)
});
}
/// Find the root node for `vid`. This uses the standard
/// union-find algorithm with path compression:
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
///
/// NB. This is a building-block operation and you would probably
/// prefer to call `probe` below.
///
/// This is an always-inlined version of this function for the hot
/// callsites. `uninlined_get_root_key` is the never-inlined version.
#[inline(always)]
fn inlined_get_root_key(&mut self, vid: S::Key) -> S::Key {
let v = self.value(vid);
if v.parent == vid {
return vid;
}
let redirect = v.parent;
let root_key: S::Key = self.uninlined_get_root_key(redirect);
if root_key != redirect {
// Path compression
self.update_value(vid, |value| value.parent = root_key);
}
root_key
}
// This is a never-inlined version of this function for cold callsites.
// 'inlined_get_root_key` is the always-inlined version.
#[inline(never)]
fn uninlined_get_root_key(&mut self, vid: S::Key) -> S::Key {
self.inlined_get_root_key(vid)
}
fn update_value<OP>(&mut self, key: S::Key, op: OP)
where
OP: FnOnce(&mut VarValue<S::Key>),
{
self.values.update(key.index() as usize, op);
debug!("Updated variable {:?} to {:?}", key, self.value(key));
}
/// Either redirects `node_a` to `node_b` or vice versa, depending
/// on the relative rank. The value associated with the new root
/// will be `new_value`.
///
/// NB: This is the "union" operation of "union-find". It is
/// really more of a building block. If the values associated with
/// your key are non-trivial, you would probably prefer to call
/// `unify_var_var` below.
fn unify_roots(&mut self, key_a: S::Key, key_b: S::Key, new_value: S::Value) {
debug!("unify(key_a={:?}, key_b={:?})", key_a, key_b);
let rank_a = self.value(key_a).rank;
let rank_b = self.value(key_b).rank;
if let Some((new_root, redirected)) = S::Key::order_roots(
key_a,
&self.value(key_a).value,
key_b,
&self.value(key_b).value,
) {
// compute the new rank for the new root that they chose;
// this may not be the optimal choice.
let new_rank = if new_root == key_a {
debug_assert!(redirected == key_b);
if rank_a > rank_b {
rank_a
} else {
rank_b + 1
}
} else {
debug_assert!(new_root == key_b);
debug_assert!(redirected == key_a);
if rank_b > rank_a {
rank_b
} else {
rank_a + 1
}
};
self.redirect_root(new_rank, redirected, new_root, new_value);
} else if rank_a > rank_b {
// a has greater rank, so a should become b's parent,
// i.e., b should redirect to a.
self.redirect_root(rank_a, key_b, key_a, new_value);
} else if rank_a < rank_b {
// b has greater rank, so a should redirect to b.
self.redirect_root(rank_b, key_a, key_b, new_value);
} else {
// If equal, redirect one to the other and increment the
// other's rank.
self.redirect_root(rank_a + 1, key_a, key_b, new_value);
}
}
/// Internal method to redirect `old_root_key` (which is currently
/// a root) to a child of `new_root_key` (which will remain a
/// root). The rank and value of `new_root_key` will be updated to
/// `new_rank` and `new_value` respectively.
fn redirect_root(
&mut self,
new_rank: u32,
old_root_key: S::Key,
new_root_key: S::Key,
new_value: S::Value,
) {
self.update_value(old_root_key, |old_root_value| {
old_root_value.redirect(new_root_key);
});
self.update_value(new_root_key, |new_root_value| {
new_root_value.root(new_rank, new_value);
});
}
}
/// ////////////////////////////////////////////////////////////////////////
/// Public API
impl<S, K, V> UnificationTable<S>
where
S: UnificationStoreBase<Key = K, Value = V>,
K: UnifyKey<Value = V>,
V: UnifyValue,
{
/// Obtains current value for key without any pointer chasing; may return `None` if key has been union'd.
#[inline]
pub fn try_probe_value<'a, K1>(&'a self, id: K1) -> Option<&'a V>
where
K1: Into<K>,
K: 'a,
{
let id = id.into();
let v = self.value(id);
if v.parent == id {
return Some(&v.value);
}
None
}
}
impl<S, K, V> UnificationTable<S>
where
S: UnificationStoreMut<Key = K, Value = V>,
K: UnifyKey<Value = V>,
V: UnifyValue,
{
/// Unions two keys without the possibility of failure; only
/// applicable when unify values use `NoError` as their error
/// type.
pub fn union<K1, K2>(&mut self, a_id: K1, b_id: K2)
where
K1: Into<K>,
K2: Into<K>,
V: UnifyValue<Error = NoError>,
{
self.unify_var_var(a_id, b_id).unwrap();
}
/// Unions a key and a value without the possibility of failure;
/// only applicable when unify values use `NoError` as their error
/// type.
pub fn union_value<K1>(&mut self, id: K1, value: V)
where
K1: Into<K>,
V: UnifyValue<Error = NoError>,
{
self.unify_var_value(id, value).unwrap();
}
/// Given two keys, indicates whether they have been unioned together.
pub fn unioned<K1, K2>(&mut self, a_id: K1, b_id: K2) -> bool
where
K1: Into<K>,
K2: Into<K>,
{
self.find(a_id) == self.find(b_id)
}
/// Given a key, returns the (current) root key.
pub fn find<K1>(&mut self, id: K1) -> K
where
K1: Into<K>,
{
let id = id.into();
self.uninlined_get_root_key(id)
}
/// Unions together two variables, merging their values. If
/// merging the values fails, the error is propagated and this
/// method has no effect.
pub fn unify_var_var<K1, K2>(&mut self, a_id: K1, b_id: K2) -> Result<(), V::Error>
where
K1: Into<K>,
K2: Into<K>,
{
let a_id = a_id.into();
let b_id = b_id.into();
let root_a = self.uninlined_get_root_key(a_id);
let root_b = self.uninlined_get_root_key(b_id);
if root_a == root_b {
return Ok(());
}
let combined = V::unify_values(&self.value(root_a).value, &self.value(root_b).value)?;
Ok(self.unify_roots(root_a, root_b, combined))
}
/// Sets the value of the key `a_id` to `b`, attempting to merge
/// with the previous value.
pub fn unify_var_value<K1>(&mut self, a_id: K1, b: V) -> Result<(), V::Error>
where
K1: Into<K>,
{
let a_id = a_id.into();
let root_a = self.uninlined_get_root_key(a_id);
let value = V::unify_values(&self.value(root_a).value, &b)?;
self.update_value(root_a, |node| node.value = value);
Ok(())
}
/// Returns the current value for the given key. If the key has
/// been union'd, this will give the value from the current root.
pub fn probe_value<K1>(&mut self, id: K1) -> V
where
K1: Into<K>,
{
self.inlined_probe_value(id)
}
// An always-inlined version of `probe_value`, for hot callsites.
#[inline(always)]
pub fn inlined_probe_value<K1>(&mut self, id: K1) -> V
where
K1: Into<K>,
{
let id = id.into();
let id = self.inlined_get_root_key(id);
self.value(id).value.clone()
}
}
///////////////////////////////////////////////////////////////////////////
impl UnifyValue for () {
type Error = NoError;
fn unify_values(_: &(), _: &()) -> Result<(), NoError> {
Ok(())
}
}
impl<V: UnifyValue> UnifyValue for Option<V> {
type Error = V::Error;
fn unify_values(a: &Option<V>, b: &Option<V>) -> Result<Self, V::Error> {
match (a, b) {
(&None, &None) => Ok(None),
(&Some(ref v), &None) | (&None, &Some(ref v)) => Ok(Some(v.clone())),
(&Some(ref a), &Some(ref b)) => match V::unify_values(a, b) {
Ok(v) => Ok(Some(v)),
Err(err) => Err(err),
},
}
}
}