1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/// A very simple BitVector type.
pub struct BitVector {
    data: Vec<u64>,
}

impl BitVector {
    pub fn new(num_bits: usize) -> BitVector {
        let num_words = u64s(num_bits);
        BitVector { data: vec![0; num_words] }
    }

    pub fn contains(&self, bit: usize) -> bool {
        let (word, mask) = word_mask(bit);
        (self.data[word] & mask) != 0
    }

    /// Returns true if the bit has changed.
    pub fn insert(&mut self, bit: usize) -> bool {
        let (word, mask) = word_mask(bit);
        let data = &mut self.data[word];
        let value = *data;
        let new_value = value | mask;
        *data = new_value;
        new_value != value
    }

    pub fn insert_all(&mut self, all: &BitVector) -> bool {
        assert!(self.data.len() == all.data.len());
        let mut changed = false;
        for (i, j) in self.data.iter_mut().zip(&all.data) {
            let value = *i;
            *i = value | *j;
            if value != *i {
                changed = true;
            }
        }
        changed
    }

    pub fn grow(&mut self, num_bits: usize) {
        let num_words = u64s(num_bits);
        let extra_words = self.data.len() - num_words;
        self.data.extend((0..extra_words).map(|_| 0));
    }

    /// Iterates over indexes of set bits in a sorted order
    pub fn iter<'a>(&'a self) -> BitVectorIter<'a> {
        BitVectorIter {
            iter: self.data.iter(),
            current: 0,
            idx: 0,
        }
    }
}

pub struct BitVectorIter<'a> {
    iter: ::std::slice::Iter<'a, u64>,
    current: u64,
    idx: usize,
}

impl<'a> Iterator for BitVectorIter<'a> {
    type Item = usize;
    fn next(&mut self) -> Option<usize> {
        while self.current == 0 {
            self.current = if let Some(&i) = self.iter.next() {
                if i == 0 {
                    self.idx += 64;
                    continue;
                } else {
                    self.idx = u64s(self.idx) * 64;
                    i
                }
            } else {
                return None;
            }
        }
        let offset = self.current.trailing_zeros() as usize;
        self.current >>= offset;
        self.current >>= 1; // shift otherwise overflows for 0b1000_0000_…_0000
        self.idx += offset + 1;
        return Some(self.idx - 1);
    }
}

/// A "bit matrix" is basically a square matrix of booleans
/// represented as one gigantic bitvector. In other words, it is as if
/// you have N bitvectors, each of length N. Note that `elements` here is `N`/
#[derive(Clone)]
pub struct BitMatrix {
    elements: usize,
    vector: Vec<u64>,
}

impl BitMatrix {
    // Create a new `elements x elements` matrix, initially empty.
    pub fn new(elements: usize) -> BitMatrix {
        // For every element, we need one bit for every other
        // element. Round up to an even number of u64s.
        let u64s_per_elem = u64s(elements);
        BitMatrix {
            elements: elements,
            vector: vec![0; elements * u64s_per_elem],
        }
    }

    /// The range of bits for a given element.
    fn range(&self, element: usize) -> (usize, usize) {
        let u64s_per_elem = u64s(self.elements);
        let start = element * u64s_per_elem;
        (start, start + u64s_per_elem)
    }

    pub fn add(&mut self, source: usize, target: usize) -> bool {
        let (start, _) = self.range(source);
        let (word, mask) = word_mask(target);
        let mut vector = &mut self.vector[..];
        let v1 = vector[start + word];
        let v2 = v1 | mask;
        vector[start + word] = v2;
        v1 != v2
    }

    /// Do the bits from `source` contain `target`?
    ///
    /// Put another way, if the matrix represents (transitive)
    /// reachability, can `source` reach `target`?
    pub fn contains(&self, source: usize, target: usize) -> bool {
        let (start, _) = self.range(source);
        let (word, mask) = word_mask(target);
        (self.vector[start + word] & mask) != 0
    }

    /// Returns those indices that are reachable from both `a` and
    /// `b`. This is an O(n) operation where `n` is the number of
    /// elements (somewhat independent from the actual size of the
    /// intersection, in particular).
    pub fn intersection(&self, a: usize, b: usize) -> Vec<usize> {
        let (a_start, a_end) = self.range(a);
        let (b_start, b_end) = self.range(b);
        let mut result = Vec::with_capacity(self.elements);
        for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() {
            let mut v = self.vector[i] & self.vector[j];
            for bit in 0..64 {
                if v == 0 {
                    break;
                }
                if v & 0x1 != 0 {
                    result.push(base * 64 + bit);
                }
                v >>= 1;
            }
        }
        result
    }

    /// Add the bits from `read` to the bits from `write`,
    /// return true if anything changed.
    ///
    /// This is used when computing transitive reachability because if
    /// you have an edge `write -> read`, because in that case
    /// `write` can reach everything that `read` can (and
    /// potentially more).
    pub fn merge(&mut self, read: usize, write: usize) -> bool {
        let (read_start, read_end) = self.range(read);
        let (write_start, write_end) = self.range(write);
        let vector = &mut self.vector[..];
        let mut changed = false;
        for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
            let v1 = vector[write_index];
            let v2 = v1 | vector[read_index];
            vector[write_index] = v2;
            changed = changed | (v1 != v2);
        }
        changed
    }
}

fn u64s(elements: usize) -> usize {
    (elements + 63) / 64
}

fn word_mask(index: usize) -> (usize, u64) {
    let word = index / 64;
    let mask = 1 << (index % 64);
    (word, mask)
}

#[test]
fn bitvec_iter_works() {
    let mut bitvec = BitVector::new(100);
    bitvec.insert(1);
    bitvec.insert(10);
    bitvec.insert(19);
    bitvec.insert(62);
    bitvec.insert(63);
    bitvec.insert(64);
    bitvec.insert(65);
    bitvec.insert(66);
    bitvec.insert(99);
    assert_eq!(bitvec.iter().collect::<Vec<_>>(),
               [1, 10, 19, 62, 63, 64, 65, 66, 99]);
}

#[test]
fn bitvec_iter_works_2() {
    let mut bitvec = BitVector::new(300);
    bitvec.insert(1);
    bitvec.insert(10);
    bitvec.insert(19);
    bitvec.insert(62);
    bitvec.insert(66);
    bitvec.insert(99);
    bitvec.insert(299);
    assert_eq!(bitvec.iter().collect::<Vec<_>>(),
               [1, 10, 19, 62, 66, 99, 299]);

}

#[test]
fn bitvec_iter_works_3() {
    let mut bitvec = BitVector::new(319);
    bitvec.insert(0);
    bitvec.insert(127);
    bitvec.insert(191);
    bitvec.insert(255);
    bitvec.insert(319);
    assert_eq!(bitvec.iter().collect::<Vec<_>>(), [0, 127, 191, 255, 319]);
}

#[test]
fn union_two_vecs() {
    let mut vec1 = BitVector::new(65);
    let mut vec2 = BitVector::new(65);
    assert!(vec1.insert(3));
    assert!(!vec1.insert(3));
    assert!(vec2.insert(5));
    assert!(vec2.insert(64));
    assert!(vec1.insert_all(&vec2));
    assert!(!vec1.insert_all(&vec2));
    assert!(vec1.contains(3));
    assert!(!vec1.contains(4));
    assert!(vec1.contains(5));
    assert!(!vec1.contains(63));
    assert!(vec1.contains(64));
}

#[test]
fn grow() {
    let mut vec1 = BitVector::new(65);
    assert!(vec1.insert(3));
    assert!(!vec1.insert(3));
    assert!(vec1.insert(5));
    assert!(vec1.insert(64));
    vec1.grow(128);
    assert!(vec1.contains(3));
    assert!(vec1.contains(5));
    assert!(vec1.contains(64));
    assert!(!vec1.contains(126));
}

#[test]
fn matrix_intersection() {
    let mut vec1 = BitMatrix::new(200);

    // (*) Elements reachable from both 2 and 65.

    vec1.add(2, 3);
    vec1.add(2, 6);
    vec1.add(2, 10); // (*)
    vec1.add(2, 64); // (*)
    vec1.add(2, 65);
    vec1.add(2, 130);
    vec1.add(2, 160); // (*)

    vec1.add(64, 133);

    vec1.add(65, 2);
    vec1.add(65, 8);
    vec1.add(65, 10); // (*)
    vec1.add(65, 64); // (*)
    vec1.add(65, 68);
    vec1.add(65, 133);
    vec1.add(65, 160); // (*)

    let intersection = vec1.intersection(2, 64);
    assert!(intersection.is_empty());

    let intersection = vec1.intersection(2, 65);
    assert_eq!(intersection, &[10, 64, 160]);
}