1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
//! Machinery to support functions that return unsized values.
//!
//! Written to support the [`unsized-vec`] crate, but is independent of it.
//! Requires nightly Rust.
//!
//! Unsized values can take many forms:
//!
//! - On stable Rust, values of unsized types like [`str`],
//! `[u8]`, and `dyn Any` are generally encountered behind a pointer,
//! like `&str` or `Box<dyn Any>`.
//!
//! - Nightly Rust provides limited support for passing unsized values
//! by value as arguments to functions, using the `unsized_fn_params`
//! feature. There is also `unsized_locals`, for storing these values
//! on the stack using alloca. (However, that feature is "incomplete" and
//! this crate doesn't make use of it). But even with thse two feature
//! gates enabled, functions cannot return unsized values directly.
//! Also, the only way to produce a by-value unsized value in today's Rust
//! is by dereferencing a [`Box`]; this crate provides the [`unsize`] macro
//! to work around this limitation.
//!
//! - For functions that return unsized values, this crate
//! provides the [`Emplacable`] type. Functions that want
//! to return a value of type `T`, where `T` is unsized, return an
//! `Emplacable<T, _>` instead. `Emplacable<T>` wraps a closure;
//! that closure contains instructions for writing out a `T` to
//! a caller-provided region of memory. Other functions accept the `Emplacable`
//! as an argument and call its contained closure to write out the
//! `T` to some allocation provided by them. For example, this crate
//! provides the [`box_new_with`] function, which turns an `Emplacable<T>`
//! into a [`Box<T>`].
//!
//! ## Converting between types
//!
//! | I have                    | I want                     | I can use                    |
//! |---------------------------|----------------------------|------------------------------|
//! | `[i32; 2]`                | `[i32]`                    | [`unsize`]                   |
//! | `[i32; 2]`                | `Emplacable<[i32; 2], _>`  | [`Into::into`]               |
//! | `[i32]`                   | `Box<[i32]>`               | [`box_new`]                  |
//! | `Box<[i32; 2]>`           | `Box<[i32]>`               | [`CoerceUnsized`]            |
//! | `Box<[i32]>`              | `[i32]`                    | dereference the box with `*` |
//! | `Box<[i32]>`              | `Emplacable<[i32], _>`     | [`Into::into`]               |
//! | `Vec<i32>`                | `Emplacable<[i32], _>`     | [`Into::into`]               |
//! | `Emplacable<[i32; 2], _>` | `[i32; 2]`                 | [`Emplacable::get`]          |
//! | `Emplacable<[i32; 2], _>` | `Emplacable<[i32], _>`     | [`Into::into`]               |
//! | `Emplacable<[i32; 2], _>` | `Emplacable<dyn Debug, _>` | [`Emplacable::unsize`]       |
//! | `Emplacable<[i32], _>`    | `Box<[i32]>`               | [`box_new_with`]             |
//! | `Emplacable<[i32], _>`    | `Vec<i32>`                 | [`Into::into`]               |
//! | `Emplacable<[i32], _>`    | `Rc<[i32]>`                | [`Into::into`]               |
//! | `Emplacable<[i32], _>`    | `Arc<[i32]>`               | [`Into::into`]               |
//! | `&[i32]`                  | `Box<[i32]>`               | [`Into::into`]               |
//! | `&[i32]`                  | `Emplacable<[i32], _>`     | [`Into::into`]               |
//!
//! You can replace  `[i32; 2]` and `[i32]` above by any pair of types (`T`, `U`)
//! such that [`T: Unsize<U>`][`Unsize`].
//!
//! ## A note on examples
//!
//! This crate has very few examples, as it provides tools to work with unsized types
//! but no fun things that use the tools. If you want more usage examples,
//! check out `unsized-vec`'s documentation and the `examples` folder on GitHub.
//!
//! [`unsized-vec`]: https://docs.rs/unsized-vec/
//! [`Unsize`]: core::marker::Unsize
//! [`CoerceUnsized`]: core::ops::CoerceUnsized

#![forbid(
    unsafe_op_in_unsafe_fn,
    clippy::alloc_instead_of_core,
    clippy::std_instead_of_alloc,
    clippy::std_instead_of_core
)]
#![warn(
    missing_docs,
    clippy::semicolon_if_nothing_returned,
    clippy::undocumented_unsafe_blocks
)]
#![feature(
    allocator_api,
    closure_lifetime_binder,
    forget_unsized,
    impl_trait_in_assoc_type,
    min_specialization,
    ptr_metadata,
    strict_provenance,
    type_alias_impl_trait,
    unchecked_math,
    unsize,
    unsized_fn_params
)]
#![no_std]

#[cfg(feature = "alloc")]
#[doc(hidden)]
pub extern crate alloc as alloc_crate;

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "alloc")]
use alloc_crate::{alloc, boxed::Box, ffi::CString, rc::Rc, string::String, sync::Arc, vec::Vec};

use core::{
    alloc::Layout,
    ffi::CStr,
    marker::{PhantomData, Unsize},
    mem::{self, ManuallyDrop, MaybeUninit},
    ops::FnMut,
    pin::Pin,
    ptr::{self, addr_of, Pointee},
};
#[cfg(feature = "std")]
use std::{
    ffi::{OsStr, OsString},
    path::{Path, PathBuf},
};

#[doc(hidden)]
pub mod macro_exports {
    #[cfg(feature = "alloc")]
    pub use alloc_crate;
    pub use core;
    pub use u8;

    use alloc_crate::boxed::Box;
    use core::{
        alloc::{AllocError, Allocator, Layout},
        cell::Cell,
        marker::{PhantomData, Unsize},
        mem::{self, MaybeUninit},
        ptr::{self, NonNull},
    };

    // Implementation detail of `unsize` macro.
    #[cfg_attr(not(debug_assertions), repr(transparent))]
    pub struct ImplementationDetailDoNotUse<T> {
        storage: Cell<MaybeUninit<T>>,
        #[cfg(debug_assertions)]
        allocated: bool,
    }

    pub type ImplementationDetailDoNotUseBox<'a, T, S> =
        Box<T, &'a ImplementationDetailDoNotUse<S>>;

    pub fn do_not_use_box_unsize<T, S>(
        val: S,
        a: &ImplementationDetailDoNotUse<S>,
    ) -> ImplementationDetailDoNotUseBox<'_, T, S>
    where
        T: ?Sized,
        S: Unsize<T>,
    {
        let boxed: ImplementationDetailDoNotUseBox<S, S> = Box::new_in(val, a);
        boxed
    }

    impl<T> ImplementationDetailDoNotUse<T> {
        pub const NEW: Self = Self {
            storage: Cell::new(MaybeUninit::uninit()),
            #[cfg(debug_assertions)]
            allocated: false,
        };
    }

    // SAFETY: this is an unsound implementation of the trait,
    // you can't `allocate` more than once without UB. We are careful not
    // to break this invariant inside the macro, but `ImplementationDetailDoNotUse`
    // should not be leaked to arbritrary code!
    unsafe impl<T> Allocator for &ImplementationDetailDoNotUse<T> {
        fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
            debug_assert_eq!(layout, Layout::new::<T>());
            #[cfg(debug_assertions)]
            debug_assert!(!self.allocated);
            // SAFETY: Address of `self.0` can't be null
            let thin_ptr = unsafe { NonNull::new_unchecked(self.storage.as_ptr()) };
            Ok(NonNull::from_raw_parts(
                thin_ptr.cast(),
                mem::size_of::<T>(),
            ))
        }

        unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {}
    }

    // Implementation detail of `by_value_str`.
    pub struct NonAllocator<'a>(PhantomData<&'a mut ()>);

    // SAFETY: `allocate` is a stub that is never run and always panics
    unsafe impl<'a> Allocator for NonAllocator<'a> {
        fn allocate(&self, _: Layout) -> Result<NonNull<[u8]>, AllocError> {
            unreachable!()
        }

        #[inline]
        unsafe fn deallocate(&self, _: NonNull<u8>, _: Layout) {}
    }

    pub type FakeBoxStr<'a> = Box<str, NonAllocator<'a>>;

    pub fn fake_box_str<const LEN: usize>(buf: &mut [MaybeUninit<u8>; LEN]) -> FakeBoxStr<'_> {
        let wide_ptr: *mut str = ptr::from_raw_parts_mut(buf.as_mut_ptr().cast(), LEN);

        // SAFETY: `NonAllocator::deallocate()` is a no-op
        unsafe { Box::from_raw_in(wide_ptr, NonAllocator(PhantomData)) }
    }
}

/// Helper for coercing values to unsized types.
///
/// The `unsized_fn_params` has some rough edges when it comes to coercing
/// sized values to unsized ones by value. This macro works around that.
///
/// If you have a value `val` of type `SizedType`, and you want to coerce it
/// to `UnsizedType`, write `unsize!(val, (SizedType) -> UnsizedType))`.
///
/// Probably useless without the `unsized_fn_params` or `unsized_locals` nightly features.
///
/// Requires the `alloc` crate feature
/// (though doesn't actually allocate on the heap).
///
/// # Example
///
/// ```
/// #![feature(unsized_fn_params)]
///
/// use core::fmt::Debug;
///
/// use emplacable::{box_new, unsize};
///
/// let mut my_box: Box<dyn Debug> = box_new(unsize!("hello world!", (&str) -> dyn Debug));
///
/// dbg!(&my_box);
/// ```
#[cfg(all(feature = "alloc", not(miri)))]
#[macro_export]
macro_rules! unsize {
    ($e:expr, ($src:ty) -> $dst:ty) => {{
        // To make the coercion happen, we:
        // 1. Make a fake "allocator" that just stores
        //   `mem::size_of<$src>()` bytes on the stack
        // 2. Allocate our sized value in a `Box` in our fake allocator
        // 3. Coerce the box to hold an unsized value
        // 4. Move out of the box
        use $crate::{
            macro_exports::{
                do_not_use_box_unsize,
                ImplementationDetailDoNotUse,
                ImplementationDetailDoNotUseBox,
            },
        };

        let val: $src = $e;

        let new_alloc: ImplementationDetailDoNotUse<$src> = ImplementationDetailDoNotUse::NEW;
        let boxed_unsized: ImplementationDetailDoNotUseBox<$dst, $src> = do_not_use_box_unsize(val, &new_alloc);

        *boxed_unsized
    }};
}

/// Construct a `str` from a string literal,
/// in its dereferenced form.
///
/// Probably useless without the `unsized_fn_params` or `unsized_locals` nightly features.
///
/// Requires the `alloc` crate feature
/// (though doesn't actually allocate on the heap).
///
/// # Example
///
/// ```
/// #![feature(allocator_api, ptr_metadata, unsized_fn_params)]
///
/// use emplacable::{box_new, by_value_str};
///
/// let boxed_str: Box<str> = box_new(by_value_str!("why hello there"));
/// dbg!(&*boxed_str);
/// ```
#[cfg(all(feature = "alloc", not(miri)))]
#[macro_export]
macro_rules! by_value_str {
    ($s:literal) => {{
        // This implementation is similar to the one from `unsize`.
        // 1. Declare a constant `&str` for the string
        // 2. Copy the contents of the constant into a buffer
        // 5. Convert a pointer into the buffer into a `Box<str>`
        // 4. Move out of the box
        use $crate::macro_exports::{
            alloc_crate::boxed::Box,
            core::{
                mem::MaybeUninit,
                ptr::{self, addr_of_mut},
            },
            fake_box_str, u8,
        };

        const STRING: &str = $s;
        const LEN: usize = STRING.len();
        let mut buf: [MaybeUninit<u8>; LEN] = [MaybeUninit::uninit(); LEN];

        // SAFETY: `buf` has compatible layout
        unsafe {
            ptr::copy(STRING.as_ptr().cast::<u8>(), addr_of_mut!(buf).cast(), LEN);
        }

        let boxed = fake_box_str(&mut buf);
        *boxed
    }};
}

// FIXME enable once https://github.com/rust-lang/rust/issues/109020 is fixed
/*
type WithEmplacableForFn<'a, T: ?Sized + 'a> = impl EmplacableFn<T> + 'a;

/// Accepts a possibly-unsized value as a first argument,
/// turns it into an [`Emplacable`], and passes the emplacer to
/// the given closure.
///
/// If `T` is sized, you can use [`Into::into`] instead.
///
/// # Example
///
/// ```
/// #![feature(allocator_api, ptr_metadata, unsized_fn_params)]
///
/// use emplacable::{box_new_with, unsize, with_emplacable_for};
///
/// let b = with_emplacable_for(unsize!([23_i32, 4, 32], ([i32; 3]) -> [i32]), |e| {
///   box_new_with(e)
/// });
/// assert_eq!(&*b, &[23_i32, 4, 32]);
/// ```
#[inline]
pub fn with_emplacable_for<'a, T: 'a, F, R>(mut val: T, mut f: F) -> R
where
    T: ?Sized,
    F: for<'b> FnMut(Emplacable<T, WithEmplacableForFn<'b, T>>) -> R,
{
    /// SAFETY: `val` must point to a valid `T`. `val` must not be dropped
    /// after this function completes.
    #[inline]
    unsafe fn with_emplacable_for_inner<'a, T: ?Sized + 'a, R>(
        val: &'a mut T,
        f: &mut dyn FnMut(Emplacable<T, WithEmplacableForFn<'a, T>>) -> R,
    ) -> R {
        fn with_emplacable_closure<T: ?Sized>(val: &mut T) -> WithEmplacableForFn<'_, T> {
            move |emplacer: &mut Emplacer<T>| {
                // SAFETY: We
                let layout = Layout::for_value(val);
                let metadata = ptr::metadata(val);
                // Safety: we call the closure right after
                let emplacer_closure = unsafe { emplacer.into_fn() };
                emplacer_closure(layout, metadata, &mut |out_ptr| {
                    if !out_ptr.is_null() {
                        // SAFETY: copying value where it belongs.
                        // We `forget` right after to prevent double-free.
                        // `Emplacer` preconditions say this can only be run once.
                        unsafe {
                            ptr::copy_nonoverlapping(
                                ptr::addr_of_mut!(*val).cast::<u8>(),
                                out_ptr.cast(),
                                layout.size(),
                            );
                        }
                    } else {
                        // SAFETY: we `mem::forget` `val` later to avoid double-drop
                        unsafe { ptr::drop_in_place(val) }
                    }
                });
            }
        }

        // SAFETY: closure fulfills safety preconditions
        let emplacable = unsafe { Emplacable::from_fn(with_emplacable_closure(val)) };

        f(emplacable)
    }

    let ret = unsafe { with_emplacable_for_inner(&mut val, &mut f) };
    mem::forget_unsized(val);
    ret
}*/

/// Alias of [`for<'a> FnOnce(&'a mut Emplacer<T>)`](Emplacer<T>).
pub trait EmplacableFn<T>: for<'a> FnOnce(&'a mut Emplacer<T>)
where
    T: ?Sized,
{
}

impl<T, F> EmplacableFn<T> for F
where
    T: ?Sized,
    F: for<'a> FnOnce(&'a mut Emplacer<T>),
{
}

/// A wrapped closure that you can pass to functions like `box_new_with`,
/// that describes how to write a value of type `T` to a caller-provided
/// allocation. You can get a `T` out of an `Emplacable` through functions like
/// [`box_new_with`]. Alternately, you can drop the value of type `T` by dropping
/// the `Emplacable`. Or you can forget the value of type `T` with [`Emplacable::forget`].
///
/// ## How it works
///
/// To make an [`Emplacable<T, _>`], you must first produce an [`EmplacableFn<T>`],
/// which is an [`FnOnce`] that accepts an [`Emplacer<T>`]. Your [`EmplacableFn<T>`] perform the follwoing steps:
///
/// 1. Call [`into_fn`][`Emplacer::into_fn`] on the [`Emplacer<T>`] to obtain a [`EmplacerFn<T>`], which is an alias for
/// `dyn FnMut(Layout, <T as Pointee>::Metadata, &mut (dyn FnMut(*mut PhantomData<T>)))`.
/// 2. Call the [`EmplacerFn<T>`] with the following arguments:
///
///     1. `Layout`: The layout of the value of type `T` you want to emplace
///     2. `<T as Pointee>::Metadata`: The pointer metadata of the value of type `T` you want to emplace
///     3. `&mut (dyn FnMut(*mut PhantomData<T>)))`: The closure you must pass for this thrid argument
///         must do one of two things, depending on the `*mut PhantomData<T>` pointer it recieves.
///         - if the pointer is null, it should drop the value of type `T`.
///         - otherwise, it should write the value of type `T` to the pointer,
///           which it can assume points to the start of an allocation with the size and alignment of
///           the `Layout` from above.
///
/// Once you have an [`EmplacableFn<T>`], use [`Emplacable::from_fn`] to turn it into an [`Emplacable<T, _>`].
///
/// There are **safety preconditions** at every step of this process that **must be respected to avoid UB.**
/// Read the documentation of all the methods involved to learn about them.
#[repr(transparent)]
pub struct Emplacable<T, F>
where
    T: ?Sized,
    F: EmplacableFn<T>,
{
    closure: ManuallyDrop<F>,
    phantom: PhantomData<fn(&mut Emplacer<T>)>,
}

impl<T, F> Emplacable<T, F>
where
    T: ?Sized,
    F: EmplacableFn<T>,
{
    /// Create a new `Emplacable` from a closure.
    /// This is only useful if you are implementing
    /// a function that returns an unsized value as
    /// an [`Emplacable`].
    ///
    /// # Safety
    ///
    /// The closure `closurse` *must*, either diverge
    /// without returning, or, if it returns, then
    /// it must have used the emplacer to fully
    /// initalize the value.
    #[must_use]
    #[inline]
    pub unsafe fn from_fn(closure: F) -> Self {
        Emplacable {
            closure: ManuallyDrop::new(closure),
            phantom: PhantomData,
        }
    }

    /// Returns the closure inside this `Emplacable`.
    ///
    /// This is only useful if you are implementing
    /// a function like [`box_new_with`].
    #[must_use]
    #[inline]
    pub fn into_fn(self) -> F {
        let mut manually_drop_self = ManuallyDrop::new(self);

        // SAFETY: `self` is in a `ManuallyDrop`, so no double drop
        unsafe { ManuallyDrop::take(&mut manually_drop_self.closure) }
    }

    /// Emplaces this sized `T` onto the stack.
    #[must_use]
    #[inline]
    pub fn get(self) -> T
    where
        T: Sized,
    {
        let mut buf: MaybeUninit<T> = MaybeUninit::uninit();

        let emplacer_closure =
            &mut |_: Layout, (), inner_closure: &mut dyn FnMut(*mut PhantomData<T>)| {
                inner_closure(buf.as_mut_ptr().cast());
            };

        // SAFETY: emplacer passes in pointer to `MaybeUninit` buffer, which is of the right size/align
        let emplacer = unsafe { Emplacer::from_fn(emplacer_closure) };

        let closure = self.into_fn();
        closure(emplacer);

        // SAFETY: `buf` was initialized by the emplacer
        unsafe { buf.assume_init() }
    }

    /// Runs the `Emplacable` closure,
    /// but doesn't run the "inner closure",
    /// so the value of type `T` is forgotten,
    /// and its destructor is not run.
    ///
    /// If you want to drop the `T` and run its destructor,
    /// drop the `Emplacable` instead.
    #[inline]
    pub fn forget(self) {
        #[inline]
        fn forgetting_emplacer_closure<T: ?Sized>(
            _: Layout,
            _: <T as Pointee>::Metadata,
            _: &mut dyn FnMut(*mut PhantomData<T>),
        ) {
            // Do nothing. Just forget the value ever existed.
        }

        let emplacable_closure = self.into_fn();

        let ref_to_fn = &mut forgetting_emplacer_closure::<T>;

        // SAFETY: `forgetting_emplacer` fulfills the requirements
        let forgetting_emplacer = unsafe { Emplacer::from_fn(ref_to_fn) };

        emplacable_closure(forgetting_emplacer);
    }

    /// Turns an emplacer for a sized type into one for an unsized type
    /// via an unsizing coercion (for example, array -> slice or
    /// concrete type -> trait object).
    #[must_use]
    #[inline]
    pub fn unsize<U: ?Sized>(self) -> Emplacable<U, impl EmplacableFn<U>>
    where
        T: Sized + Unsize<U>,
    {
        const fn metadata<T: Unsize<U>, U: ?Sized>() -> <U as Pointee>::Metadata {
            // Do an unsizing coercion to get the right metadata.
            let null_ptr_to_t: *const T = ptr::null();
            let null_ptr_to_u: *const U = null_ptr_to_t;
            ptr::metadata(null_ptr_to_u)
        }

        let sized_emplacable_closure = self.into_fn();

        let unsized_emplacable_closure = move |unsized_emplacer: &mut Emplacer<U>| {
            // SAFETY: We are just wrapping this emplacer
            let unsized_emplacer_closure = unsafe { unsized_emplacer.into_fn() };

            let mut sized_emplacer_closure =
                |_: Layout, _: (), sized_inner_closure: &mut dyn FnMut(*mut PhantomData<T>)| {
                    let unsized_inner_closure: &mut dyn FnMut(*mut PhantomData<U>) =
                        &mut |unsized_ptr: *mut PhantomData<U>| {
                            sized_inner_closure(unsized_ptr.cast());
                        };

                    unsized_emplacer_closure(
                        Layout::new::<T>(),
                        metadata::<T, U>(),
                        unsized_inner_closure,
                    );
                };

            // SAFETY: just wrapping the emplacer we got, fulfills the preconditions if the inner one does
            let sized_emplacer = unsafe { Emplacer::from_fn(&mut sized_emplacer_closure) };

            sized_emplacable_closure(sized_emplacer);
        };

        // SAFETY: Again, just wrapping our input
        unsafe { Emplacable::from_fn(unsized_emplacable_closure) }
    }

    /// Creates an `Emplacable` for a slice of values of type `T` out of an iterator
    /// of values of type `T`.
    ///
    /// This function differs from [`FromIterator::from_iter`] in that the iterator is required to
    /// be an [`ExactSizeIterator`]. If `ExactSizeIterator` is incorrectly implemented,
    /// this function may panic or otherwise misbehave (but will not trigger UB).
    #[allow(clippy::should_implement_trait)] // We only take `ExactSizeIterator`s
    #[inline]
    pub fn from_iter<I>(iter: I) -> Emplacable<[T], impl EmplacableFn<[T]>>
    where
        T: Sized,
        I: IntoIterator<Item = Self>,
        I::IntoIter: ExactSizeIterator,
    {
        fn from_iter_inner<
            T,
            F: EmplacableFn<T>,
            I: Iterator<Item = Emplacable<T, F>> + ExactSizeIterator,
        >(
            iter: I,
        ) -> Emplacable<[T], impl EmplacableFn<[T]>> {
            let len = iter.len();

            // Panics if size overflows `isize::MAX`.
            let layout = Layout::from_size_align(
                mem::size_of::<T>().checked_mul(len).unwrap(),
                mem::align_of::<T>(),
            )
            .unwrap();

            let slice_emplacer_closure = move |slice_emplacer: &mut Emplacer<[T]>| {
                // Move ite into closure
                let emplacables_iter = ManuallyDrop::new(iter);

                // SAFETY: we fulfill the preconditions
                let slice_emplacer_fn = unsafe { slice_emplacer.into_fn() };

                slice_emplacer_fn(layout, len, &mut |arr_out_ptr: *mut PhantomData<[T]>| {
                    if !arr_out_ptr.is_null() {
                        let elem_emplacables: I =
                            // SAFETY: this "inner closure" can only be called once,
                            // per preconditions of `Emplacer::new`.
                            // `elem_emplacables` is inside a `ManuallyDrop`, so avoid double-drop.
                            unsafe { ptr::read(&*emplacables_iter) };

                        // We can't trust `ExactSizeIterator`'s `len()`,
                        // so we keep track of how many
                        // elements were actually returned.
                        let mut num_elems_copied: usize = 0;

                        let indexed_elem_emplacables = (0..len).zip(elem_emplacables);
                        indexed_elem_emplacables.for_each(|(index, elem_emplacable)| {
                            let elem_emplacable_closure = elem_emplacable.into_fn();
                            let elem_emplacer_closure = &mut move |
                                    _: Layout,
                                    (),
                                    inner_closure: &mut dyn FnMut(*mut PhantomData<T>),
                                | {
                                    // SAFETY: by fn precondition
                                    inner_closure(unsafe { arr_out_ptr.cast::<T>().add(index).cast() });
                                };

                            // SAFETY: `elem_emplacer_closure` passes a pointer with the correct offset from the
                            // start of the allocation
                            let elem_emplacer = unsafe { Emplacer::from_fn(elem_emplacer_closure) };
                            elem_emplacable_closure(elem_emplacer);

                            num_elems_copied += 1;
                        });

                        assert_eq!(num_elems_copied, len);
                    } else {
                        let emplacables_iter: I =
                            // SAFETY: this "inner closure" can only be called once,
                            // per preconditions of `Emplacer::new`.
                            // `elem_emplacables` is inside a `ManuallyDrop`, so avoid double-drop.
                            unsafe { ptr::read(&*emplacables_iter) };

                        for _emplacable in emplacables_iter {
                            // drop `emplacable`
                        }
                    }
                });
            };

            // SAFETY: `closure` properly emplaces `val`
            unsafe { Emplacable::from_fn(slice_emplacer_closure) }
        }

        let emplacables_iter = iter.into_iter();

        from_iter_inner(emplacables_iter)
    }
}

impl<T, F> Drop for Emplacable<T, F>
where
    T: ?Sized,
    F: EmplacableFn<T>,
{
    /// Runs the contained closure to completion,
    /// instructing it to drop the value of type `T`.
    fn drop(&mut self) {
        #[inline]
        fn dropping_emplacer_closure<T: ?Sized>(
            _: Layout,
            _: <T as Pointee>::Metadata,
            inner_closure: &mut dyn FnMut(*mut PhantomData<T>),
        ) {
            // null ptr signals we wish to drop the value.
            inner_closure(ptr::null_mut());
        }

        let ref_to_fn = &mut dropping_emplacer_closure::<T>;

        // SAFETY: `dropping_emplacer_closure` fulfills the requirements
        let dropping_emplacer = unsafe { Emplacer::from_fn(ref_to_fn) };

        // SAFETY: we are inside `drop`, so no one else will access this
        // `ManuallyDrop` after us
        let emplacable_closure = unsafe { ManuallyDrop::take(&mut self.closure) };

        emplacable_closure(dropping_emplacer);
    }
}

/// Implementation detail for the `From` impls.
#[doc(hidden)]
pub trait IntoEmplacable<T: ?Sized> {
    type Closure: EmplacableFn<T>;

    #[must_use]
    fn into_emplacable(self) -> Emplacable<T, Self::Closure>;
}

impl<T> IntoEmplacable<T> for T {
    type Closure = impl EmplacableFn<Self>;

    #[inline]
    fn into_emplacable(self) -> Emplacable<T, Self::Closure> {
        let closure = move |emplacer: &mut Emplacer<T>| {
            let mut manually_drop_self = ManuallyDrop::new(self);
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(Layout::new::<T>(), (), &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: copying value where it belongs.
                    // We use `ManuallyDrop` prevent double-free.
                    // `Emplacer` preconditions say this can only be run once.
                    unsafe {
                        ptr::copy_nonoverlapping(
                            addr_of!(*manually_drop_self).cast::<T>(),
                            out_ptr.cast(),
                            1,
                        );
                    }
                } else {
                    // SAFETY: we use `ManuallyDrop` to avoid double drop
                    unsafe { ManuallyDrop::drop(&mut manually_drop_self) }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

impl<T> From<T> for Emplacable<T, <T as IntoEmplacable<T>>::Closure> {
    #[inline]
    fn from(value: T) -> Self {
        value.into_emplacable()
    }
}

// Implementation detail for the `From<&[T]>` impl of `Emplacable<[T], _>`,
// allows us to specialize on `T: Copy`
trait CopyToBuf: Sized {
    /// # Safety
    ///
    /// `buf` must be valid to write `slice.len() * mem::size_of<T>()`
    /// bytes into, and bust be aligned to `mem::align_of<T>()`.
    unsafe fn copy_to_buf(slice: &[Self], buf: *mut Self);
}

impl<T: Clone> CopyToBuf for T {
    #[inline]
    default unsafe fn copy_to_buf(slice: &[Self], buf: *mut Self) {
        for (index, elem) in slice.iter().enumerate() {
            let owned = elem.clone();
            // SAFETY: copying value where it belongs. safe to write to
            // `buf` by preconditions of function
            unsafe { buf.cast::<T>().add(index).write(owned) };
        }
    }
}

impl<T: Copy> CopyToBuf for T {
    #[inline]
    unsafe fn copy_to_buf(slice: &[Self], buf: *mut Self) {
        // SAFETY: copying value where it belongs. safe to write to
        // `buf` by preconditions of function
        unsafe {
            ptr::copy_nonoverlapping(addr_of!(slice).cast(), buf, slice.len());
        }
    }
}

impl<'s, T: Clone + 's> IntoEmplacable<[T]> for &'s [T] {
    type Closure = impl for<'a> FnOnce(&'a mut Emplacer<[T]>) + 's;

    #[inline]
    fn into_emplacable(self) -> Emplacable<[T], Self::Closure> {
        let metadata = ptr::metadata(self);
        let layout = Layout::for_value(self);

        let closure = move |emplacer: &mut Emplacer<[T]>| {
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: by precondtion of `Emplacer::new`
                    unsafe { <T as CopyToBuf>::copy_to_buf(self, out_ptr.cast()) }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

impl<'s, T: Clone + 's> From<&'s [T]>
    for Emplacable<[T], <&'s [T] as IntoEmplacable<[T]>>::Closure>
{
    #[inline]
    fn from(value: &'s [T]) -> Self {
        <&[T] as IntoEmplacable<[T]>>::into_emplacable(value)
    }
}

impl<'s> IntoEmplacable<str> for &'s str {
    type Closure = impl for<'a> FnOnce(&'a mut Emplacer<str>) + 's;

    #[inline]
    fn into_emplacable(self) -> Emplacable<str, Self::Closure> {
        let metadata = ptr::metadata(self);
        let layout = Layout::for_value(self);

        let closure = move |emplacer: &mut Emplacer<str>| {
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: copying value where it belongs.
                    unsafe {
                        ptr::copy_nonoverlapping(
                            addr_of!(*self).cast::<u8>(),
                            out_ptr.cast(),
                            layout.size(),
                        );
                    }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

impl<'s> From<&'s str> for Emplacable<str, <&'s str as IntoEmplacable<str>>::Closure> {
    #[inline]
    fn from(value: &'s str) -> Self {
        <&str as IntoEmplacable<str>>::into_emplacable(value)
    }
}

impl<'s> IntoEmplacable<CStr> for &'s CStr {
    type Closure = impl for<'a> FnOnce(&'a mut Emplacer<CStr>) + 's;

    #[inline]
    fn into_emplacable(self) -> Emplacable<CStr, Self::Closure> {
        let metadata = ptr::metadata(self);
        let layout = Layout::for_value(self);

        let closure = move |emplacer: &mut Emplacer<CStr>| {
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: copying value where it belongs.
                    unsafe {
                        ptr::copy_nonoverlapping(
                            addr_of!(*self).cast::<u8>(),
                            out_ptr.cast(),
                            layout.size(),
                        );
                    }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

impl<'s> From<&'s CStr> for Emplacable<CStr, <&'s CStr as IntoEmplacable<CStr>>::Closure> {
    #[inline]
    fn from(value: &'s CStr) -> Self {
        <&CStr as IntoEmplacable<CStr>>::into_emplacable(value)
    }
}

#[cfg(feature = "std")]
impl<'s> IntoEmplacable<OsStr> for &'s OsStr {
    type Closure = impl for<'a> FnOnce(&'a mut Emplacer<OsStr>) + 's;

    #[must_use]
    #[inline]
    fn into_emplacable(self) -> Emplacable<OsStr, Self::Closure> {
        let metadata = ptr::metadata(self);
        let layout = Layout::for_value(self);

        let closure = move |emplacer: &mut Emplacer<OsStr>| {
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: copying value where it belongs.
                    // We `forget` right after to prevent double-free.
                    // `Emplacer` preconditions say this can only be run once.
                    unsafe {
                        ptr::copy_nonoverlapping(
                            addr_of!(*self).cast::<u8>(),
                            out_ptr.cast(),
                            layout.size(),
                        );
                    }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

#[cfg(feature = "std")]
impl<'s> From<&'s OsStr> for Emplacable<OsStr, <&'s OsStr as IntoEmplacable<OsStr>>::Closure> {
    #[inline]
    fn from(value: &'s OsStr) -> Self {
        <&OsStr as IntoEmplacable<OsStr>>::into_emplacable(value)
    }
}

#[cfg(feature = "std")]
impl<'s> IntoEmplacable<Path> for &'s Path {
    type Closure = impl for<'a> FnOnce(&'a mut Emplacer<Path>) + 's;

    #[must_use]
    #[inline]
    fn into_emplacable(self) -> Emplacable<Path, Self::Closure> {
        let metadata = ptr::metadata(self);
        let layout = Layout::for_value(self);

        let closure = move |emplacer: &mut Emplacer<Path>| {
            // Safety: we call the closure right after
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: copying value where it belongs.
                    // We `forget` right after to prevent double-free.
                    // `Emplacer` preconditions say this can only be run once.
                    unsafe {
                        ptr::copy_nonoverlapping(
                            addr_of!(*self).cast::<u8>(),
                            out_ptr.cast(),
                            layout.size(),
                        );
                    }
                }
            });
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

#[cfg(feature = "std")]
impl<'s> From<&'s Path> for Emplacable<Path, <&'s Path as IntoEmplacable<Path>>::Closure> {
    #[inline]
    fn from(value: &'s Path) -> Self {
        <&Path as IntoEmplacable<Path>>::into_emplacable(value)
    }
}

/// Implementation detail of `From<Emplacable<str, _>> for Emplacable<u8, _>`.
#[doc(hidden)]
pub trait FromEmplacable<T: ?Sized> {
    type OutputClosure<F: EmplacableFn<T>>: EmplacableFn<Self>;

    fn from_emplacable<F: EmplacableFn<T>>(
        emplacable: Emplacable<T, F>,
    ) -> Emplacable<Self, Self::OutputClosure<F>>;
}

impl<F: EmplacableFn<str>> IntoEmplacable<[u8]> for Emplacable<str, F> {
    type Closure = impl EmplacableFn<[u8]>;

    #[inline]
    fn into_emplacable(self) -> Emplacable<[u8], Self::Closure> {
        let str_closure = self.into_fn();

        #[allow(clippy::unused_unit)] // https://github.com/rust-lang/rust-clippy/issues/9748
        let u8_emplacer_closure = for<'a, 'b> move |u8_emplacer: &'a mut Emplacer<'b, [u8]>| -> () {
            let u8_emplacer_fn: &mut EmplacerFn<[u8]> =
                // SAFETY: just wrapping this in another emplacer
                unsafe { u8_emplacer.into_fn() };

            let mut str_emplacer_fn =
                |layout: Layout,
                 metadata: usize,
                 str_inner_closure: &mut dyn FnMut(*mut PhantomData<str>)| {
                    let u8_inner_closure: &mut dyn FnMut(*mut PhantomData<[u8]>) =
                        &mut |u8_ptr: *mut PhantomData<[u8]>| str_inner_closure(u8_ptr.cast());

                    u8_emplacer_fn(layout, metadata, u8_inner_closure);
                };

            let str_emplacer: &mut Emplacer<str> =
                // SAFETY: Emplacer just calle inner emplacer
                unsafe { Emplacer::from_fn(&mut str_emplacer_fn) };

            str_closure(str_emplacer);
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(u8_emplacer_closure) }
    }
}

impl<F> From<Emplacable<str, F>>
    for Emplacable<[u8], <Emplacable<str, F> as IntoEmplacable<[u8]>>::Closure>
where
    F: EmplacableFn<str>,
{
    #[inline]
    fn from(emplacable: Emplacable<str, F>) -> Self {
        <Emplacable<str, F> as IntoEmplacable<[u8]>>::into_emplacable(emplacable)
    }
}

#[cfg(feature = "alloc")]
impl<T: ?Sized> IntoEmplacable<T> for Box<T> {
    type Closure = impl EmplacableFn<T>;

    fn into_emplacable(self) -> Emplacable<T, Self::Closure> {
        let closure = move |emplacer: &mut Emplacer<T>| {
            let layout = Layout::for_value(&*self);
            let ptr = Box::into_raw(self);
            let metadata = ptr::metadata(ptr);

            // SAFETY: we fulfill the preconditions
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, metadata, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: checked for null, copying correct number of bytes.
                    unsafe {
                        ptr::copy_nonoverlapping(ptr.cast(), out_ptr.cast::<u8>(), layout.size());
                    }
                } else {
                    // SAFETY: there is no more `Box`, so no double drop
                    unsafe {
                        ptr::drop_in_place(ptr);
                    }
                }
            });

            if layout.size() > 0 {
                // SAFETY: deallocating what the `Box` allocated
                unsafe { alloc::dealloc(ptr.cast(), layout) }
            }
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

#[cfg(feature = "alloc")]
impl<T: ?Sized> From<Box<T>> for Emplacable<T, <Box<T> as IntoEmplacable<T>>::Closure> {
    #[inline]
    fn from(value: Box<T>) -> Self {
        <Box<T> as IntoEmplacable<T>>::into_emplacable(value)
    }
}

#[cfg(feature = "alloc")]
impl<T> IntoEmplacable<[T]> for Vec<T> {
    type Closure = impl EmplacableFn<[T]>;

    fn into_emplacable(self) -> Emplacable<[T], Self::Closure> {
        let closure = move |emplacer: &mut Emplacer<[T]>| {
            let mut vec = ManuallyDrop::new(self);

            let ptr = vec.as_mut_ptr();
            let len = vec.len();
            let capacity = vec.capacity();
            // SAFETY: values come from the vec
            let layout = unsafe {
                Layout::from_size_align_unchecked(
                    capacity.unchecked_mul(mem::size_of::<T>()),
                    mem::align_of::<T>(),
                )
            };

            // SAFETY: we fulfill the preconditions
            let emplacer_closure = unsafe { emplacer.into_fn() };
            emplacer_closure(layout, len, &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: checked for null, copying correct number of bytes.
                    // `Vec` is in a `ManuallyDrop`, so no double drop
                    unsafe {
                        ptr::copy_nonoverlapping(ptr, out_ptr.cast::<T>(), len);
                    }
                } else {
                    for elem in &mut *vec {
                        // SAFETY: `Vec` is in a `ManuallyDrop`, so no double drop
                        unsafe {
                            ptr::drop_in_place(elem);
                        }
                    }
                }
            });

            if layout.size() > 0 {
                // SAFETY: deallocating what the `Vec` allocated. The `Vec` is in a `ManuallyDrop`,
                // so no double-drop
                unsafe { alloc::dealloc(ptr.cast(), layout) }
            }
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(closure) }
    }
}

#[cfg(feature = "alloc")]
impl<T> From<Vec<T>> for Emplacable<[T], <Vec<T> as IntoEmplacable<[T]>>::Closure> {
    #[inline]
    fn from(value: Vec<T>) -> Self {
        <Vec<T> as IntoEmplacable<[T]>>::into_emplacable(value)
    }
}

impl<T, const N: usize, F: EmplacableFn<[T; N]>> IntoEmplacable<[T]> for Emplacable<[T; N], F> {
    type Closure = impl EmplacableFn<[T]>;

    #[inline]
    fn into_emplacable(self) -> Emplacable<[T], Self::Closure> {
        self.unsize()
    }
}

impl<T, const N: usize, F> From<Emplacable<[T; N], F>>
    for Emplacable<[T], <Emplacable<[T; N], F> as IntoEmplacable<[T]>>::Closure>
where
    F: EmplacableFn<[T; N]>,
{
    #[inline]
    fn from(value: Emplacable<[T; N], F>) -> Self {
        <Emplacable<[T; N], F> as IntoEmplacable<[T]>>::into_emplacable(value)
    }
}

impl<T, const N: usize, F: EmplacableFn<T>> IntoEmplacable<[T; N]> for [Emplacable<T, F>; N] {
    type Closure = impl EmplacableFn<[T; N]>;

    #[inline]
    fn into_emplacable(self) -> Emplacable<[T; N], Self::Closure> {
        let arr_emplacer_closure = move |arr_emplacer: &mut Emplacer<[T; N]>| {
            let mut elem_emplacables = ManuallyDrop::new(self);
            // SAFETY: we fulfill the preconditions
            let arr_emplacer_fn = unsafe { arr_emplacer.into_fn() };

            arr_emplacer_fn(
                Layout::new::<[T; N]>(),
                (),
                &mut |arr_out_ptr: *mut PhantomData<[T; N]>| {
                    if !arr_out_ptr.is_null() {
                        let elem_emplacables: [Emplacable<T, F>; N] =
                            // SAFETY: this "inner closure" can only be called once,
                            // per preconditions of `Emplacer::new`.
                            // we `mem::forget` `elem_emplacables` below to avoid double-drop.
                            unsafe { ptr::read(&*elem_emplacables) };

                        let n_zeros: [usize; N] = [0; N];
                        let mut i: usize = 0;
                        let indexes: [usize; N] = n_zeros.map(|_| {
                            i = i.wrapping_add(1);
                            i.wrapping_sub(1)
                        });

                        indexes
                            .into_iter()
                            .zip(elem_emplacables.into_iter())
                            .for_each(|(index, elem_emplacable)| {
                                let elem_emplacable_closure = elem_emplacable.into_fn();
                                let elem_emplacer_closure =
                                    &mut move |_: Layout,
                                               (),
                                               inner_closure: &mut dyn FnMut(
                                        *mut PhantomData<T>,
                                    )| {
                                        // SAFETY: by fn precondition
                                        inner_closure(unsafe {
                                            arr_out_ptr.cast::<T>().add(index).cast()
                                        });
                                    };

                                let elem_emplacer =
                                    // SAFETY: `elem_emplacer_closure` passes a pointer with the correct offset from the
                                    // start of the allocation
                                    unsafe { Emplacer::from_fn(elem_emplacer_closure) };
                                elem_emplacable_closure(elem_emplacer);
                            });
                    } else {
                        // Dropping the array of emplacers drops each emplacer,
                        // which drops the `T`s as well
                        // SAFETY: this "inner closure" can only be called once,
                        // per preconditions of `Emplacer::new`.
                        // we never access `elem_emplacables` after this.
                        unsafe {
                            ManuallyDrop::drop(&mut elem_emplacables);
                        }
                    }
                },
            );
        };

        // SAFETY: `closure` properly emplaces `val`
        unsafe { Emplacable::from_fn(arr_emplacer_closure) }
    }
}

impl<T, const N: usize, F> From<[Emplacable<T, F>; N]>
    for Emplacable<[T; N], <[Emplacable<T, F>; N] as IntoEmplacable<[T; N]>>::Closure>
where
    F: EmplacableFn<T>,
{
    #[inline]
    fn from(value: [Emplacable<T, F>; N]) -> Self {
        <[Emplacable<T, F>; N] as IntoEmplacable<[T; N]>>::into_emplacable(value)
    }
}

impl<T, const N: usize, F: EmplacableFn<T>> IntoEmplacable<[T]> for [Emplacable<T, F>; N] {
    type Closure = impl EmplacableFn<[T]>;

    #[inline]
    fn into_emplacable(self) -> Emplacable<[T], Self::Closure> {
        <[Emplacable<T, F>; N] as IntoEmplacable<[T; N]>>::into_emplacable(self).into()
    }
}

impl<T, const N: usize, F> From<[Emplacable<T, F>; N]>
    for Emplacable<[T], <[Emplacable<T, F>; N] as IntoEmplacable<[T]>>::Closure>
where
    F: EmplacableFn<T>,
{
    #[inline]
    fn from(value: [Emplacable<T, F>; N]) -> Self {
        <[Emplacable<T, F>; N] as IntoEmplacable<[T]>>::into_emplacable(value)
    }
}

/// The type of the closure that [`Emplacer<'a, T>`] wraps.
///
/// [`Emplacer<'a, T>`]: Emplacer
pub type EmplacerFn<'a, T> = dyn for<'b> FnMut(Layout, <T as Pointee>::Metadata, &'b mut (dyn FnMut(*mut PhantomData<T>)))
    + 'a;

/// Passed as the last argument to [`Emplacable`] closures.
/// Wraps a closure that tells the function where to write its return value.
///
/// You won't need to interact with this type directly unless you are writing a function
/// that directly produces or consumes `Emplacable`s.
///
/// An `Emplacer` closure generally does one of three things:
///
/// 1. Allocate memory with the layout of its first argument, run the closure it receives
///    as its third argument with a pointer to the start of the allocation, then constructs a pointer
///    of type `T` to that allocation with the given metadata.
/// 2. Run the closure it recieves with a null pointer to signal that the value of type `T` should be dropped in place.
/// 3. Do nothing at all, signifying that the value of type `T` should be forgotten and its desctructor should not be run.
///
/// `Emplacer`s are allowed to panic, unwind, abort, etc. However, they can't unwind after
/// they have run their inner closure.
#[repr(transparent)]
pub struct Emplacer<'a, T>(EmplacerFn<'a, T>)
where
    T: ?Sized;

impl<'a, T> Emplacer<'a, T>
where
    T: ?Sized,
{
    /// Creates an `Emplacer` from an [`EmplacerFn<T>`] closure
    /// (a `dyn FnMut(Layout, <T as Pointee>::Metadata, &mut dyn FnMut(*mut PhantomData<T>))`).
    ///
    /// `emplacer_fn` should do one the following things:
    ///
    /// - Allocate a chunk of memory that satisfies the requirements of the [`Layout`]
    ///   it receives as its fisrst argument, and pass a pointer to the start of that allocation
    ///   to the closure it recieves as its third argument.
    /// - Ignore its first and second arguments, and pass a null pointer to the closure
    ///   as its first argument.
    /// - Do nothing at all.
    ///
    /// # Safety
    ///
    /// The `emplacer_fn`, if it runs the closure that it recieves as a third argument, must
    /// pass in a pointer that is ether null, or has the alignment of the `Layout` passed to it,
    /// and is valid for writes of the number of bytes corresponding to the `Layout`.
    ///
    /// `emplacer_fn` is not permitted to run the closure it receives as its third argument more than once.
    ///
    /// If `emplacer_fn` runs the closure it receives as its thrid argument, it must do so before returning.
    ///
    /// `emplacer_fn` is allowed to unwind or otherwise diverge. But if it runs the closure it receives as its third argument,
    /// then once that inner closure returns, `emplacer_fn` is no longer allowed to unwind.
    ///
    /// The `emplacer_fn` can't assume that is has received full ownership of
    /// the value written to the pointer of the inner closure, until the moment `emplacer_fn`
    /// (and the [`EmplacableFn<T>`] that calls it) returns. Specifically, `emplacer_fn` is not
    /// allowed to drop the value.
    #[must_use]
    #[inline]
    pub unsafe fn from_fn<'b>(emplacer_fn: &'b mut EmplacerFn<'a, T>) -> &'b mut Self {
        // SAFETY: `repr(transparent)` guarantees compatible layouts
        unsafe { &mut *((emplacer_fn as *mut EmplacerFn<'a, T>) as *mut Self) }
    }

    /// Obtains the closure inside this `Emplacer<T>`.
    /// This should generally be called only inside [`EmplacableFn<T>`]s.
    ///
    /// # Safety
    ///
    /// If you call the resulting [`EmplacerFn`] closure, you must ensure
    /// that the closure you pass in:
    ///
    /// - If it receives a non-null pointer as an argument, it *must* write a valid value of type `T`
    ///   to the passed-in pointer. This value must correspond to the `Layout` and pointer metadata you
    ///   passed to the [`EmplacerFn<T>`].
    /// - If it recieves a null pointer as an argument, then it is recommmended that you drop the
    ///   value of type `T` that you would have written out had the pointer been non-null.
    ///   (you aren't *required* to do this.)
    /// - In either case, the closure is alterately allowed to panic, unwind, abort, or diverge
    ///   in some other way. If it does so, it is not obligated to perform the tasks listed above.
    ///
    /// If `T`'s size or alignment can be known at compile-time, or can be determined from the
    /// pointer metadata alone, and you pass in an oversized/overaligned `Layout`, then you are not guaranteed
    /// to get an allocation that matches the `Layout`'s stronger guarantees.
    ///
    /// You may not call the [`EmplacerFn`] closure more than once.
    #[inline]
    pub unsafe fn into_fn<'b>(&'b mut self) -> &'b mut EmplacerFn<'a, T> {
        // SAFETY: `repr(transparent)` guarantees compatible layouts
        &mut self.0
    }
}

/// Like [`Box::new`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn box_new<T>(x: T) -> Box<T>
where
    T: ?Sized,
{
    let layout = Layout::for_value(&x);
    let metadata = ptr::metadata(&x);
    let alloc_ptr = if layout.size() > 0 {
        // SAFETY: `layout` has non-zero size, we just checked
        let maybe_ptr = unsafe { alloc::alloc(layout) };

        if maybe_ptr.is_null() {
            alloc::handle_alloc_error(layout)
        };

        // SAFETY: copying value into allocation. We make sure to forget it after
        unsafe { ptr::copy_nonoverlapping(addr_of!(x).cast(), maybe_ptr, layout.size()) };

        maybe_ptr
    } else {
        ptr::invalid_mut(layout.align())
    };

    // Avoid double-drop
    mem::forget_unsized(x);

    let wide_ptr = ptr::from_raw_parts_mut(alloc_ptr.cast(), metadata);

    // SAFETY: `Box` allocated in global allocator, except for when it would be a zero-sized allocation
    unsafe { Box::from_raw(wide_ptr) }
}

/// Like [`Box::new`], but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and return sits result emplaced into a `Box`.
#[cfg(feature = "alloc")]
#[inline]
pub fn box_new_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Box<T>
where
    T: ?Sized,
{
    /// Helper to ensure `box_new_with` doesn't leak memory
    /// if the unsized-value-returning function panics.
    ///
    /// Deallocates the contained pointer when dropped.
    /// Must be costructed with a pointer returned by
    /// `alloc::alloc`, and `layout` must be the same
    /// as was passed to the `alloc` call.
    /// Must `mem::forget` the struct to avoid deallocating
    /// its memory.
    struct PointerDeallocer {
        ptr: *mut u8,
        layout: Layout,
    }

    impl Drop for PointerDeallocer {
        #[inline]
        fn drop(&mut self) {
            if self.layout.size() != 0 {
                // SAFETY: if layout is non-zero then this pointer
                // should have been allocated with this layout
                unsafe { alloc::dealloc(self.ptr, self.layout) }
            }
        }
    }

    let mut uninit_box = MaybeUninit::uninit();

    let emplacer_closure =
        &mut |layout: Layout, meta, closure: &mut dyn FnMut(*mut PhantomData<T>)| {
            // If `closure` panics and triggers an unwind,
            // this will be dropped, which will call `dealloc` on `ptr`
            // and ensure no memory is leaked.
            let deallocer = PointerDeallocer {
                ptr: if layout.size() == 0 {
                    ptr::invalid_mut(layout.align())
                } else {
                    // SAFETY: just checked that layout is not zero-sized
                    unsafe { alloc::alloc(layout) }
                },
                layout,
            };

            if deallocer.ptr.is_null() {
                // Don't want to deallocate a raw pointer
                mem::forget(deallocer);
                alloc::handle_alloc_error(layout);
            }

            closure(deallocer.ptr.cast());

            let wide_ptr = ptr::from_raw_parts_mut(deallocer.ptr.cast::<()>(), meta);
            // SAFETY: Pointer either is to 0-sized allocation or comes from global allocator
            let init_box = unsafe { Box::from_raw(wide_ptr) };

            // Now that we've succesfully initialized the box,
            // we don't want to deallocate its memory.
            mem::forget(deallocer);

            uninit_box.write(init_box);
        };

    // SAFETY: `emplacer_closure` meets the preconditions
    let emplacer = unsafe { Emplacer::from_fn(emplacer_closure) };

    let emplacing_clousre = emplacable.into_fn();
    emplacing_clousre(emplacer);

    // SAFETY: if `unsized_ret` respected `EmplacingClosure`'s safety contract,
    // then `uninit_box` should be initialized.
    unsafe { uninit_box.assume_init() }
}

impl<T, F> Emplacable<[T], F>
where
    F: EmplacableFn<[T]>,
{
    /// Turns this emplacer for a slice of `T`s into an owned [`Vec<T>`].
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_vec(self) -> Vec<T> {
        self.into()
    }
}

#[cfg(feature = "alloc")]
impl<T, F> From<Emplacable<[T], F>> for Vec<T>
where
    F: EmplacableFn<[T]>,
{
    #[inline]
    fn from(emplacable: Emplacable<[T], F>) -> Self {
        box_new_with(emplacable).into_vec()
    }
}

#[cfg(feature = "alloc")]
impl<T, F> FromIterator<Emplacable<T, F>> for Vec<T>
where
    F: EmplacableFn<T>,
{
    #[inline]
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = Emplacable<T, F>>,
    {
        let mut vec = Vec::new();
        vec.extend(iter);
        vec
    }
}

#[cfg(feature = "alloc")]
impl<T, F> Extend<Emplacable<T, F>> for Vec<T>
where
    F: EmplacableFn<T>,
{
    #[inline]
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = Emplacable<T, F>>,
    {
        fn extend_inner<T, F: EmplacableFn<T>, I: Iterator<Item = Emplacable<T, F>>>(
            vec: &mut Vec<T>,
            iter: I,
        ) {
            vec.reserve_exact(iter.size_hint().0);

            for emplacable in iter {
                vec.push(emplacable.get());
            }
        }

        extend_inner(self, iter.into_iter());
    }
}

impl<F> Emplacable<str, F>
where
    F: EmplacableFn<str>,
{
    /// Turns this emplacer for a string slice into an owned, heap-allocated [`String`].
    ///
    /// [`String`]: alloc_crate::string::String
    #[cfg(feature = "alloc")]
    #[must_use]
    #[inline]
    pub fn into_string(self) -> String {
        self.into()
    }
}

#[cfg(feature = "alloc")]
impl<F> From<Emplacable<str, F>> for String
where
    F: EmplacableFn<str>,
{
    #[inline]
    fn from(emplacable: Emplacable<str, F>) -> Self {
        box_new_with(emplacable).into_string()
    }
}

#[cfg(feature = "alloc")]
impl<F> From<Emplacable<CStr, F>> for CString
where
    F: EmplacableFn<CStr>,
{
    #[inline]
    fn from(emplacable: Emplacable<CStr, F>) -> Self {
        box_new_with(emplacable).into_c_string()
    }
}

#[cfg(feature = "std")]
impl<F> From<Emplacable<OsStr, F>> for OsString
where
    F: EmplacableFn<OsStr>,
{
    #[inline]
    fn from(emplacable: Emplacable<OsStr, F>) -> Self {
        box_new_with(emplacable).into_os_string()
    }
}

#[cfg(feature = "std")]
impl<F> From<Emplacable<Path, F>> for PathBuf
where
    F: EmplacableFn<Path>,
{
    #[inline]
    fn from(emplacable: Emplacable<Path, F>) -> Self {
        box_new_with(emplacable).into_path_buf()
    }
}

/// Like [`Box::pin`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn box_pin<T>(x: T) -> Pin<Box<T>>
where
    T: ?Sized,
{
    Box::into_pin(box_new(x))
}

/// Like [`Box::pin`], , but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and return sits result pinned and emplaced into a `Box`.
#[cfg(feature = "alloc")]
#[inline]
pub fn box_pin_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Pin<Box<T>>
where
    T: ?Sized,
{
    Box::into_pin(box_new_with(emplacable))
}

/// Like [`Rc::new`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn rc_new<T>(value: T) -> Rc<T>
where
    T: ?Sized,
{
    box_new(value).into()
}

/// Like [`Rc::new`], but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and returns the result emplaced into an `Rc`.
#[cfg(feature = "alloc")]
#[inline]
pub fn rc_new_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Rc<T>
where
    T: ?Sized,
{
    box_new_with(emplacable).into()
}

#[cfg(feature = "alloc")]
impl<T, F> From<Emplacable<T, F>> for Rc<T>
where
    T: ?Sized,
    F: EmplacableFn<T>,
{
    #[inline]
    fn from(emplacable: Emplacable<T, F>) -> Self {
        rc_new_with(emplacable)
    }
}

/// Like [`Rc::pin`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn rc_pin<T>(x: T) -> Pin<Rc<T>>
where
    T: ?Sized,
{
    // SAFETY: we own `x`
    unsafe { Pin::new_unchecked(rc_new(x)) }
}

/// Like [`Rc::pin`], but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and returns the result pinned and emplaced into an `Rc`.
#[cfg(feature = "alloc")]
#[inline]
pub fn rc_pin_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Pin<Rc<T>>
where
    T: ?Sized,
{
    // SAFETY: we own `x`
    unsafe { Pin::new_unchecked(rc_new_with(emplacable)) }
}

/// Like [`Arc::new`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn arc_new<T>(value: T) -> Arc<T>
where
    T: ?Sized,
{
    box_new(value).into()
}

/// Like [`Arc::new`], but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and returns the result emplaced into an `Arc`.
#[cfg(feature = "alloc")]
#[inline]
pub fn arc_new_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Arc<T>
where
    T: ?Sized,
{
    box_new_with(emplacable).into()
}

#[cfg(feature = "alloc")]
impl<T, F> From<Emplacable<T, F>> for Arc<T>
where
    T: ?Sized,
    F: EmplacableFn<T>,
{
    #[inline]
    fn from(emplacable: Emplacable<T, F>) -> Self {
        arc_new_with(emplacable)
    }
}

/// Like [`Arc::pin`], but `T` can be `?Sized`.
///
/// You will need `#![feature(unsized_fn_params)]`
/// to call this.
#[cfg(all(feature = "alloc", not(miri)))]
#[inline]
pub fn arc_pin<T>(x: T) -> Pin<Arc<T>>
where
    T: ?Sized,
{
    // SAFETY: we own `x`
    unsafe { Pin::new_unchecked(arc_new(x)) }
}

/// Like [`Arc::pin`], but takes an [`Emplacer<T, _>`]
/// instead of `T` directly.
///
/// Runs the contained unsized-value-returning closure,
/// and returns the result pinned and emplaced into an `Arc`.
#[cfg(feature = "alloc")]
#[inline]
pub fn arc_pin_with<T>(emplacable: Emplacable<T, impl EmplacableFn<T>>) -> Pin<Arc<T>>
where
    T: ?Sized,
{
    // SAFETY: we own `x`
    unsafe { Pin::new_unchecked(arc_new_with(emplacable)) }
}