1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use bitvec::prelude::*;

use crate::{helpers::num_as_bv, sizes, Error, Magic};

/// Represents a version number conforming to the semantic versioning scheme
///
/// Conversions:
/// * To an integer: [`Semver::to_i32`], [`Semver::to_u32`], [`Semver::to_i64`]
///   and [`Semver::to_u64`]
/// * From an integer: [`Semver::from_i32`], [`Semver::from_u32`], [`Semver::from_i64`]
///   and [`Semver::from_u64`]
///
/// [Wikipedia](https://en.wikipedia.org/wiki/Software_versioning#Degree_of_compatibility)
/// explains semantic versioning and the fields in detail.
#[derive(Debug, PartialEq)]
pub struct Semver {
    /// The semantic versioning major version (high risk)
    pub major: usize,
    /// The semantic versioning minor version (medium risk)
    pub minor: usize,
    /// The semantic versioning patch version (lowest risk)
    pub patch: usize,

    /// Magic with what the Semver has been or will be packed
    magic: Magic,
}

impl Semver {
    /// Helper for constructing new instance
    pub fn new(major: usize, minor: usize, patch: usize) -> Self {
        Self {
            major,
            minor,
            patch,
            magic: Default::default(),
        }
    }

    /// Construct from an i64
    pub fn from_i64(n: i64) -> Result<Self, Error> {
        let bytes = n.to_le_bytes();
        let bv = bytes.view_bits::<Msb0>();
        let sizes = sizes::size_iterator(&sizes::I64_SIZES);
        Ok(Self::from_size_iterator(&bv, sizes)?)
    }

    /// Construct from an u64
    pub fn from_u64(n: u64) -> Result<Self, Error> {
        let i64 = i64::from_le_bytes(n.to_le_bytes());
        Self::from_i64(i64)
    }

    /// Construct from an i32
    pub fn from_i32(n: i32) -> Result<Self, Error> {
        let bytes = n.to_le_bytes();
        let bv = bytes.view_bits::<Msb0>();
        let sizes = sizes::size_iterator(&sizes::I32_SIZES);
        Ok(Self::from_size_iterator(bv, sizes)?)
    }

    /// Construct from an u32
    pub fn from_u32(n: u32) -> Result<Self, Error> {
        let i32 = i32::from_le_bytes(n.to_le_bytes());
        Self::from_i32(i32)
    }

    /// Convert to an i32. Errs if any of the fields overflow
    pub fn to_i32(&self) -> Result<i32, Error> {
        let mut bv: BitArray<Msb0, [u8; 4]> = BitArray::zeroed();
        let sizes = sizes::size_iterator(&sizes::I32_SIZES);
        self.append_with_size_iterator(&mut bv, sizes)?;
        Ok(i32::from_le_bytes(*bv.as_buffer()))
    }

    /// Convert to an u32. Errs if any of the fields overflow
    pub fn to_u32(&self) -> Result<u32, Error> {
        let val = self.to_i32()?;
        Ok(u32::from_le_bytes(val.to_le_bytes()))
    }

    /// Convert to an u64. Errs if any of the fields overflow
    pub fn to_i64(&self) -> Result<i64, Error> {
        let mut bv: BitArray<Msb0, [u8; 8]> = BitArray::zeroed();
        let sizes = sizes::size_iterator(&sizes::I64_SIZES);
        self.append_with_size_iterator(&mut bv, sizes)?;
        Ok(i64::from_le_bytes(*bv.as_buffer()))
    }

    /// Convert to an u64. Errs if any of the fields overflow
    pub fn to_u64(&self) -> Result<u64, Error> {
        let val = self.to_i64()?;
        Ok(u64::from_le_bytes(val.to_le_bytes()))
    }

    fn from_size_iterator<const SIZE: usize>(
        bv: &BitSlice<Msb0, u8>,
        mut sizes: sizes::SizeIterator<SIZE>,
    ) -> Result<Self, Error> {
        Ok(Self {
            magic: convert_api_version(bv[sizes.next().unwrap()].load::<u64>())?,
            major: bv[sizes.next().unwrap()].load::<usize>(),
            minor: bv[sizes.next().unwrap()].load::<usize>(),
            patch: bv[sizes.next().unwrap()].load::<usize>(),
        })
    }

    fn append_with_size_iterator<const SIZE: usize, const ITER_SIZE: usize>(
        &self,
        bv: &mut BitArray<Msb0, [u8; SIZE]>,
        mut sizes: sizes::SizeIterator<ITER_SIZE>,
    ) -> Result<(), Error> {
        num_as_bv(bv, &mut sizes, Magic::default() as u64)?; // for now, can be extended in future
        num_as_bv(bv, &mut sizes, self.major as u64)?;
        num_as_bv(bv, &mut sizes, self.minor as u64)?;
        num_as_bv(bv, &mut sizes, self.patch as u64)?;
        Ok(())
    }
}

fn convert_api_version(n: u64) -> Result<Magic, Error> {
    let api_version = match n {
        0 => Magic::V0,
        1 => Magic::V1,
        2 => Magic::V2,
        3 => Magic::V3,
        _ => return Err(Error::UnknownMagic(n)),
    };

    match api_version {
        Magic::V0 => (),
        _ => return Err(Error::UnsupportedMagic(api_version)),
    }

    Ok(api_version)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_roundtrips() {
        assert_roundtrip_i32(Semver::new(254, 500, 498));
        assert_roundtrip_i32(Semver::new(0, 0, 0));

        assert_roundtrip_u32(Semver::new(254, 500, 498));
        assert_roundtrip_u32(Semver::new(0, 0, 0));

        assert_roundtrip_i64(Semver::new(65343, 64000, 65310));
        assert_roundtrip_i64(Semver::new(0, 0, 0));

        assert_roundtrip_u64(Semver::new(65343, 64000, 65310));
        assert_roundtrip_u64(Semver::new(0, 0, 0));

        let val = Semver::new(5, 230, 150).to_i32().unwrap() as u32;
        let version = Semver::from_u32(val).unwrap();
        assert_eq!(version, Semver::new(5, 230, 150));
    }

    #[test]
    fn test_unsupported_api_version() {
        let mut bv: BitArray<Msb0, [u8; 4]> = BitArray::zeroed();
        let mut iter = sizes::size_iterator(&sizes::I32_SIZES);
        num_as_bv(&mut bv, &mut iter, Magic::V2 as u64).unwrap();
        let val = i32::from_le_bytes(*bv.as_buffer());

        assert_eq!(
            Semver::from_i32(val).unwrap_err(),
            Error::UnsupportedMagic(Magic::V2)
        );
    }

    #[test]
    fn test_unknown_api_version() {
        let mut bv: BitArray<Msb0, [u8; 8]> = BitArray::zeroed();
        let mut iter = sizes::size_iterator(&sizes::I64_SIZES);
        num_as_bv(&mut bv, &mut iter, 13).unwrap();
        let val = i64::from_le_bytes(*bv.as_buffer());

        assert_eq!(Semver::from_i64(val).unwrap_err(), Error::UnknownMagic(13));
    }

    #[test]
    fn test_from_i32() {
        assert_eq!(Semver::from_i32(16843009).unwrap(), test_version())
    }

    #[test]
    fn test_from_u32() {
        let u32 = u32::from_le_bytes(16843009i32.to_le_bytes());
        assert_eq!(Semver::from_u32(u32).unwrap(), test_version())
    }

    #[test]
    fn test_from_i64() {
        assert_eq!(Semver::from_i64(21474902017).unwrap(), test_version())
    }

    #[test]
    fn test_from_u64() {
        let u64 = u64::from_le_bytes(21474902017i64.to_le_bytes());
        assert_eq!(Semver::from_u64(u64).unwrap(), test_version())
    }

    #[test]
    fn test_to_i32() {
        let val = test_version().to_i32().unwrap();
        assert_eq!(val, 16843009);
        assert_eq!(&val.to_le_bytes()[..], &[0b1, 0b1, 0b1, 0b1]);
    }

    #[test]
    fn test_to_i64() {
        let val = test_version().to_i64().unwrap();
        assert_eq!(
            &val.to_le_bytes()[..],
            &[0b1, 0b0, 0b1, 0b0, 0b101, 0b0, 0b0, 0b0]
        );

        assert_eq!(val, 21474902017);
    }

    #[test]
    fn test_overflow_i32() {
        assert!(Semver::new(2usize.pow(10), 2usize.pow(10), 2usize.pow(10))
            .to_i32()
            .is_ok());

        // for overflows, see sizes::I32_SIZES
        assert_eq!(
            Semver::new(2usize.pow(10) + 1, 0, 0).to_i32().unwrap_err(),
            Error::Overflow
        );

        assert_eq!(
            Semver::new(0, 2usize.pow(10) + 1, 0).to_i32().unwrap_err(),
            Error::Overflow
        );

        assert_eq!(
            Semver::new(0, 0, 2usize.pow(10) + 1).to_i32().unwrap_err(),
            Error::Overflow
        );
    }

    #[test]
    fn test_overflow_i64() {
        assert!(Semver::new(2usize.pow(16), 2usize.pow(16), 2usize.pow(16))
            .to_i64()
            .is_ok());

        // see sizes::I64_SIZES
        let overflow = 2usize.pow(16) + 1;

        assert_eq!(
            Semver::new(overflow, 0, 0).to_i64().unwrap_err(),
            Error::Overflow
        );

        assert_eq!(
            Semver::new(0, overflow, 0).to_i64().unwrap_err(),
            Error::Overflow
        );

        assert_eq!(
            Semver::new(0, 0, overflow).to_i64().unwrap_err(),
            Error::Overflow
        );
    }

    fn test_version() -> Semver {
        Semver {
            major: 1,
            minor: 1,
            patch: 5,
            magic: Magic::V0,
        }
    }

    fn assert_roundtrip_i32(ver: Semver) {
        assert_eq!(Semver::from_i32(ver.to_i32().unwrap()).unwrap(), ver);
    }

    fn assert_roundtrip_u32(ver: Semver) {
        assert_eq!(Semver::from_u32(ver.to_u32().unwrap()).unwrap(), ver);
    }

    fn assert_roundtrip_i64(ver: Semver) {
        assert_eq!(Semver::from_i64(ver.to_i64().unwrap()).unwrap(), ver);
    }

    fn assert_roundtrip_u64(ver: Semver) {
        assert_eq!(Semver::from_u64(ver.to_u64().unwrap()).unwrap(), ver);
    }
}