1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Async IO traits

use core::future::Future;

pub use crate::blocking::ReadExactError;

type ReadExactFuture<'a, T>
where
    T: Read + ?Sized + 'a,
= impl Future<Output = Result<(), ReadExactError<T::Error>>>;

/// Async reader.
///
/// Semantics are the same as [`std::io::Read`], check its documentation for details.
pub trait Read: crate::Io {
    /// Future returned by `read`.
    type ReadFuture<'a>: Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    /// Pull some bytes from this source into the specified buffer, returning how many bytes were read.
    fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a>;

    /// Read the exact number of bytes required to fill `buf`.
    fn read_exact<'a>(&'a mut self, mut buf: &'a mut [u8]) -> ReadExactFuture<'a, Self> {
        async move {
            while !buf.is_empty() {
                match self.read(buf).await {
                    Ok(0) => break,
                    Ok(n) => buf = &mut buf[n..],
                    Err(e) => return Err(ReadExactError::Other(e)),
                }
            }
            if !buf.is_empty() {
                Err(ReadExactError::UnexpectedEof)
            } else {
                Ok(())
            }
        }
    }
}

/// Async buffered reader.
///
/// Semantics are the same as [`std::io::BufRead`], check its documentation for details.
pub trait BufRead: crate::Io {
    /// Future returned by `fill_buf`.
    type FillBufFuture<'a>: Future<Output = Result<&'a [u8], Self::Error>>
    where
        Self: 'a;

    /// Return the contents of the internal buffer, filling it with more data from the inner reader if it is empty.
    fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a>;

    /// Tell this buffer that `amt` bytes have been consumed from the buffer, so they should no longer be returned in calls to `fill_buf`.
    fn consume(&mut self, amt: usize);
}

type WriteAllFuture<'a, T>
where
    T: Write + ?Sized + 'a,
= impl Future<Output = Result<(), T::Error>>;

/// Async writer.
///
/// Semantics are the same as [`std::io::Write`], check its documentation for details.
pub trait Write: crate::Io {
    /// Future returned by `write`.
    type WriteFuture<'a>: Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    /// Write a buffer into this writer, returning how many bytes were written.
    fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a>;

    /// Future returned by `flush`.
    type FlushFuture<'a>: Future<Output = Result<(), Self::Error>>
    where
        Self: 'a;

    /// Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
    fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a>;

    /// Write an entire buffer into this writer.
    fn write_all<'a>(&'a mut self, buf: &'a [u8]) -> WriteAllFuture<'a, Self> {
        async move {
            let mut buf = buf;
            while !buf.is_empty() {
                match self.write(buf).await {
                    Ok(0) => panic!("zero-length write."),
                    Ok(n) => buf = &buf[n..],
                    Err(e) => return Err(e),
                }
            }
            Ok(())
        }
    }
}

impl<T: ?Sized + Read> Read for &mut T {
    type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
        T::read(self, buf)
    }
}

impl<T: ?Sized + BufRead> BufRead for &mut T {
    type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
    where
        Self: 'a;

    fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
        T::fill_buf(self)
    }

    fn consume(&mut self, amt: usize) {
        T::consume(self, amt)
    }
}

impl<T: ?Sized + Write> Write for &mut T {
    type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
        T::write(self, buf)
    }

    type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
        T::flush(self)
    }
}

/// Read is implemented for `&[u8]` by copying from the slice.
///
/// Note that reading updates the slice to point to the yet unread part.
/// The slice will be empty when EOF is reached.
impl Read for &[u8] {
    type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
        async move {
            let amt = core::cmp::min(buf.len(), self.len());
            let (a, b) = self.split_at(amt);

            // First check if the amount of bytes we want to read is small:
            // `copy_from_slice` will generally expand to a call to `memcpy`, and
            // for a single byte the overhead is significant.
            if amt == 1 {
                buf[0] = a[0];
            } else {
                buf[..amt].copy_from_slice(a);
            }

            *self = b;
            Ok(amt)
        }
    }
}

impl BufRead for &[u8] {
    type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
        async move { Ok(*self) }
    }

    #[inline]
    fn consume(&mut self, amt: usize) {
        *self = &self[amt..];
    }
}

/// Write is implemented for `&mut [u8]` by copying into the slice, overwriting
/// its data.
///
/// Note that writing updates the slice to point to the yet unwritten part.
/// The slice will be empty when it has been completely overwritten.
///
/// If the number of bytes to be written exceeds the size of the slice, write operations will
/// return short writes: ultimately, `Ok(0)`; in this situation, `write_all` returns an error of
/// kind `ErrorKind::WriteZero`.
impl Write for &mut [u8] {
    type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
        async move {
            let amt = core::cmp::min(buf.len(), self.len());
            let (a, b) = core::mem::replace(self, &mut []).split_at_mut(amt);
            a.copy_from_slice(&buf[..amt]);
            *self = b;
            Ok(amt)
        }
    }

    type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
        async move { Ok(()) }
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
impl<T: ?Sized + Read> Read for alloc::boxed::Box<T> {
    type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
        T::read(self, buf)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
impl<T: ?Sized + BufRead> BufRead for alloc::boxed::Box<T> {
    type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
    where
        Self: 'a;

    fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
        T::fill_buf(self)
    }

    fn consume(&mut self, amt: usize) {
        T::consume(self, amt)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
impl<T: ?Sized + Write> Write for alloc::boxed::Box<T> {
    type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
        T::write(self, buf)
    }

    type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
        T::flush(self)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
impl Write for alloc::vec::Vec<u8> {
    type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
        async move {
            self.extend_from_slice(buf);
            Ok(buf.len())
        }
    }

    type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
    where
        Self: 'a;

    #[inline]
    fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
        async move { Ok(()) }
    }
}