1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388



// use super::bytes_err::{SDError, Result};
use alloc::vec::Vec;
use super::TypeInfo;

/// Trait that allows writing of data.
pub trait Output {
	/// Write to the output.
	fn write(&mut self, bytes: &[u8]);

	/// Write a single byte to the output.
	fn push_byte(&mut self, byte: u8) {
		self.write(&[byte]);
	}
}

impl Output for Vec<u8> {
	fn write(&mut self, bytes: &[u8]) {
		self.extend_from_slice(bytes)
	}
}

/// Trait that allows zero-copy write of value-references to slices in LE format.
///
/// Implementations should override `using_top_encoded` for value types and `dep_encode_to` and `size_hint` for allocating types.
/// Wrapper types should override all methods.
pub trait Encode: Sized {
	// !INTERNAL USE ONLY!
	// This const helps SCALE to optimize the encoding/decoding by doing fake specialization.
	#[doc(hidden)]
	const TYPE_INFO: TypeInfo = TypeInfo::Unknown;

	/// Encode to output, using the format of an object nested inside another structure.
	/// Does not provide compact version.
	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		self.using_top_encoded(|buf| dest.write(buf));
	}

	/// Convert self to an owned vector.
	/// Allowed to provide compact version.
	/// Do not call for nested objects.
	fn top_encode(&self) -> Vec<u8> {
		let mut dest = Vec::new();
		self.using_top_encoded(|buf| dest.write(buf));
		dest
	}

	/// Convert self to a slice and then invoke the given closure with it.
	/// Allowed to provide compact version.
	/// Do not call for nested objects.
	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		// default implementation simply use dep_encode_to
		let mut dest: Vec<u8> = Vec::new();
		self.dep_encode_to(&mut dest);
		f(dest.as_slice())
	}
}

impl Encode for () {
	fn dep_encode_to<O: Output>(&self, _dest: &mut O) {
	}

	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		f(&[])
	}

	fn top_encode(&self) -> Vec<u8> {
		Vec::new()
	}
}

impl Encode for u8 {
	const TYPE_INFO: TypeInfo = TypeInfo::U8;

	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		dest.write(&[*self as u8][..]);
	}

	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		if *self == 0u8 {
			f(&[])
		} else {
			f(&[*self][..])
		}
	}
}

impl<T: Encode> Encode for &[T] {
	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		// push size
		using_encoded_number(self.len() as u64, 32, false, false, |buf| dest.write(buf));
		// actual data
		match T::TYPE_INFO {
			TypeInfo::U8 => {
				// cast &[T] to &[u8]
				let slice: &[u8] = unsafe { core::slice::from_raw_parts(self.as_ptr() as *const u8, self.len()) };
				dest.write(slice);
			},
			_ => {
				for x in *self {
					x.dep_encode_to(dest);
				}
			}
		}
	}

	#[inline]
	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		match T::TYPE_INFO {
			TypeInfo::U8 => {
				// cast Vec<T> to &[u8]
				let slice: &[u8] = unsafe { core::slice::from_raw_parts(self.as_ptr() as *const u8, self.len()) };
				f(slice);
			},
			_ => {
				let mut result: Vec<u8> = Vec::new();
				for x in *self {
					x.dep_encode_to(&mut result);
				}
				f(result.as_slice())
			}
		}
	}
}

impl<T: Encode> Encode for Vec<T> {
	#[inline]
	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		self.as_slice().dep_encode_to(dest);
	}

	#[inline]
	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		self.as_slice().using_top_encoded(f);
	}
}


/// Adds number to output buffer.
/// No argument generics here, because we want the executable binary as small as possible.
/// Smaller types need to be converted to u64 before using this function.
/// TODO: there might be a quicker version of this using transmute + reverse bytes.
pub fn using_encoded_number<F: FnOnce(&[u8])>(x: u64, size_in_bits: usize, signed: bool, mut compact: bool, f: F) {
	let mut result = [0u8; 8];
	let mut result_size = 0usize;
	let negative = 
		compact && // only relevant when compact flag
		signed &&  // only possible when signed flag
		x >> (size_in_bits - 1) & 1 == 1; // compute by checking first bit
	
	let irrelevant_byte = if negative { 0xffu8 } else { 0x00u8 };
	let mut bit_offset = size_in_bits as isize - 8;
	while bit_offset >= 0 {
		// going byte by byte from most to least significant
		let byte = (x >> (bit_offset as usize) & 0xffu64) as u8;
		
		if compact {
			// compact means ignoring irrelvant leading bytes
			// that is 000... for positives and fff... for negatives
			if byte != irrelevant_byte {
				result[result_size] = byte;
				result_size += 1;
				compact = false;
			}
		} else {
			result[result_size] = byte;
			result_size += 1;
		}
		
		bit_offset -= 8;
	}

	f(&result[0..result_size])
}

macro_rules! encode_num {
    ($num_type:ident, $size_in_bits:expr, $signed:expr) => {
		impl Encode for $num_type {
			#[inline]
            fn dep_encode_to<O: Output>(&self, dest: &mut O) {
				using_encoded_number(*self as u64, $size_in_bits, $signed, false, |buf| dest.write(buf))
			}
		
			#[inline]
            fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
				using_encoded_number(*self as u64, $size_in_bits, $signed, true, f)
			}
		}
    }
}

encode_num!{u64, 64, false}
encode_num!{i64, 64, true}
encode_num!{u32, 32, false}
encode_num!{i32, 32, true}
encode_num!{usize, 32, false}
encode_num!{isize, 32, true}
encode_num!{u16, 16, false}
encode_num!{i16, 16, true}
encode_num!{i8, 8, true}

impl Encode for bool {
	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		dest.write(&[*self as u8][..]);
	}

	fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
		if *self {
			f(&[1u8][..])
		} else {
			f(&[])
		}
	}
}

impl<T: Encode> Encode for Option<T> {
	fn dep_encode_to<O: Output>(&self, dest: &mut O) {
		match self {
			Some(v) => {
				using_encoded_number(1u64, 8, false, false, |buf| dest.write(buf));
				v.dep_encode_to(dest);
			},
			None => {
				using_encoded_number(0u64, 8, false, false, |buf| dest.write(buf));
			}
		}
	}

	// fn using_top_encoded<F: FnOnce(&[u8])>(&self, f: F) {
	// 	match self {
	// 		Some(v) => {
	// 			v.using_top_encoded(f);
	// 		},
	// 		None => {}
	// 	}
	// }
}

macro_rules! tuple_impls {
    ($(($($n:tt $name:ident)+))+) => {
        $(
            impl<$($name),+> Encode for ($($name,)+)
            where
                $($name: Encode,)+
            {
				#[inline]
				fn dep_encode_to<O: Output>(&self, dest: &mut O) {
					$(
                        self.$n.dep_encode_to(dest);
                    )+
					
				}
            }
        )+
    }
}

tuple_impls! {
    (0 T0)
    (0 T0 1 T1)
    (0 T0 1 T1 2 T2)
    (0 T0 1 T1 2 T2 3 T3)
    (0 T0 1 T1 2 T2 3 T3 4 T4)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13 14 T14)
    (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13 14 T14 15 T15)
}

////////////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
	use super::*;
	use super::super::test_struct::*;
    use core::fmt::Debug;

    fn ser_ok<V>(element: V, expected_bytes: &[u8])
    where
        V: Encode + PartialEq + Debug + 'static,
    {
		V::using_top_encoded(&element, |bytes| {
			assert_eq!(bytes, expected_bytes);
		});
        
    }

    #[test]
    fn test_top_compacted_numbers() {
        // unsigned positive
        ser_ok(5u8, &[5]);
        ser_ok(5u16, &[5]);
        ser_ok(5u32, &[5]);
        ser_ok(5u64, &[5]);
        ser_ok(5usize, &[5]);
        // signed positive
        ser_ok(5i8, &[5]);
        ser_ok(5i16, &[5]);
        ser_ok(5i32, &[5]);
        ser_ok(5i64, &[5]);
        ser_ok(5isize, &[5]);
        // signed negative
        ser_ok(-5i8, &[251]);
        ser_ok(-5i16, &[251]);
        ser_ok(-5i32, &[251]);
        ser_ok(-5i64, &[251]);
        ser_ok(-5isize, &[251]);
    }

    #[test]
    fn test_top_compacted_bool() {
        ser_ok(true,    &[1]);
        ser_ok(false,   &[]);
    }

    #[test]
    fn test_top_compacted_empty_bytes() {
        let empty_byte_slice: &[u8] = &[];
        ser_ok(empty_byte_slice, empty_byte_slice);
    }

    #[test]
    fn test_top_compacted_bytes() {
        ser_ok(&[1u8, 2u8, 3u8][..], &[1u8, 2u8, 3u8]);
    }

    #[test]
    fn test_top_compacted_vec_u8() {
        let some_vec = [1u8, 2u8, 3u8].to_vec();
        ser_ok(some_vec, &[1u8, 2u8, 3u8]);
    }

    #[test]
    fn test_top_compacted_vec_i32() {
        let some_vec = [1i32, 2i32, 3i32].to_vec();
        let expected: &[u8] = &[0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3];
        ser_ok(some_vec, expected);
	}

    #[test]
    fn test_struct() {
		let test = Test {
            int: 1,
            seq: [5, 6].to_vec(),
            another_byte: 7,
        };

        ser_ok(test, &[0, 1, 0, 0, 0, 2, 5, 6, 7]);
    }

    #[test]
    fn test_tuple() {
        ser_ok((7u32, -2i16), &[0, 0, 0, 7, 255, 254]);
    }

    #[test]
    fn test_unit() {
        ser_ok((), &[]);
    }

    #[test]
    fn test_enum() {
        let u = E::Unit;
        let expected: &[u8] = &[/*variant index*/ 0, 0, 0, 0];
        ser_ok(u, expected);

        let n = E::Newtype(1);
        let expected: &[u8] = &[/*variant index*/ 0, 0, 0, 1, /*data*/ 0, 0, 0, 1];
        ser_ok(n, expected);

        let t = E::Tuple(1, 2);
        let expected: &[u8] = &[/*variant index*/ 0, 0, 0, 2, /*(*/ 0, 0, 0, 1, /*,*/ 0, 0, 0, 2 /*)*/];
        ser_ok(t, expected);

        let s = E::Struct { a: 1 };
        let expected: &[u8] = &[/*variant index*/ 0, 0, 0, 3, /*data*/ 0, 0, 0, 1];
        ser_ok(s, expected);
    }
}