1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#[macro_use]
extern crate quote;
#[macro_use]
extern crate syn;
extern crate darling;
extern crate proc_macro;

use crate::types::ElmTypes;
use darling::{FromDeriveInput, FromMeta};
use proc_macro::TokenStream;
use std::collections::HashMap;
use syn::DeriveInput;
mod elm_files;
mod types;

#[derive(Default, FromMeta, Debug)]
#[darling(default)]
struct PathArg {
    rename: Option<String>,
    path: String,
}

#[derive(FromDeriveInput, Debug)]
#[darling(attributes(elm), forward_attrs(allow, doc, cfg))]
struct PathArgs {
    ident: syn::Ident,
    attrs: Vec<syn::Attribute>,
    opts: PathArg,
}

#[proc_macro_derive(Elm, attributes(elm))]
pub fn generate_elm_types(input: TokenStream) -> TokenStream {
    //    let input_clone = input.clone();
    let ast = parse_macro_input!(input as DeriveInput);

    let elm_path = std::env::var("ELM_TYPES").ok();

    let attrs = match PathArgs::from_derive_input(&ast) {
        Ok(val) => val.opts,
        Err(err) => {
            if elm_path.is_some() {
                PathArg {
                    rename: None,
                    path: elm_path.unwrap(),
                }
            } else {
                println!(
                    "export ELM_TYPES dir path or pass elm dir path struct opts: {}",
                    &ast.ident
                );
                return err.write_errors().into();
            }
        }
    };

    let fields = match &ast.data {
        syn::Data::Struct(syn::DataStruct { ref fields, .. }) => {
            if fields.iter().any(|field| field.ident.is_none()) {
                panic!("To use #[derive(Elm)] structs should not have unnamed fields")
            }
            fields.iter().cloned().collect()
        }
        _ => panic!("#[derive(Elm)] can only be used with structs"),
    };
    let field_types = find_field_types(&fields);
    let mut elm_fields = HashMap::new();

    for field in &fields {
        let field_ident = field.ident.as_ref().unwrap().to_string();
        let field_type = field_types
            .get(&field_ident)
            .unwrap()
            .iter()
            .map(|x| x.into())
            .collect::<Vec<ElmTypes>>();

        let name = find_name_for_field(field);
        elm_fields.insert(name, field_type);
        // println!("name:: {}, type: {:?}", name, field_type);
    }

    let ident_name = if let Some(name) = &attrs.rename {
        name.to_string()
    } else {
        ast.ident.to_string()
    };

    elm_files::generate_elm(&attrs.path, &ident_name, &mut elm_fields).unwrap();

    quote!().into()
}

fn lit_to_string(lit: &syn::Lit) -> Option<String> {
    match *lit {
        syn::Lit::Str(ref s) => Some(s.value()),
        _ => None,
    }
}

fn find_field_name(field_ident: &str, meta_items: &Vec<&syn::NestedMeta>) -> Option<String> {
    let mut field_name = None;
    for meta_item in meta_items.iter() {
        match meta_item {
            syn::NestedMeta::Meta(ref item) => match item {
                syn::Meta::Word(_ident) => {
                    continue;
                }
                syn::Meta::NameValue(syn::MetaNameValue {
                    ref ident, ref lit, ..
                }) => {
                    if ident == "rename" {
                        field_name = Some(lit_to_string(lit).unwrap());
                    }
                }
                syn::Meta::List(syn::MetaList { ref nested, .. }) => {
                    return find_field_name(field_ident, &nested.iter().collect());
                }
            },
            _ => unimplemented!("This field is unimplemented: {}", field_ident),
        };

        if field_name.is_some() {
            return field_name;
        }
    }
    field_name
}

fn find_name_for_field(field: &syn::Field) -> String {
    let field_ident = field.ident.as_ref().unwrap().to_string();
    let mut rename = None;
    let error = |msg: &str| -> ! {
        panic!(
            "Invalid attribute #[Elm] on field `{}`: {}",
            field_ident, msg,
        );
    };

    for attr in field.attrs.iter() {
        // If a field doesn't have elm as attr then continue
        if attr.path != parse_quote!(elm) {
            continue;
        }

        match attr.interpret_meta() {
            // case #[elm(rename="name_one")]
            Some(syn::Meta::List(syn::MetaList { ref nested, .. })) => {
                if attr.path == parse_quote!(elm) {
                    rename = find_field_name(&field_ident, &nested.iter().collect());
                    // println!("Rename :: {:?}", rename);
                }
            }
            // case #[elm]
            Some(syn::Meta::Word(_)) => {
                error("case `#[elm]` not implemented");
            }

            // case #[elm = "name_v1"]
            Some(syn::Meta::NameValue(syn::MetaNameValue { .. })) => {
                error("case `#[elm = \"foo\"]` not implemented");
            }
            _ => unreachable!(
                "Got something else other than a list of attributes while checking field `{}`",
                field_ident
            ),
        };
    }

    if let Some(name) = rename {
        name
    } else {
        field_ident
    }
}

fn find_field_types(fields: &Vec<syn::Field>) -> HashMap<String, Vec<types::RustType>> {
    let mut types = HashMap::new();
    for field in fields {
        let mut type_argument: Vec<types::RustType> = vec![];
        let field_ident = field.ident.as_ref().unwrap().to_string();
        find_field_type(&field.ty, &mut type_argument);
        // println!("Field name :: {}, field type: {:?}", field_ident, type_argument);
        types.insert(field_ident, type_argument);
    }
    types
}

fn find_field_type(field_type: &syn::Type, type_arg: &mut Vec<types::RustType>) {
    match field_type {
        syn::Type::Path(syn::TypePath { ref path, .. }) => {
            let path_segment: &syn::PathSegment = path.segments.last().unwrap().into_value();
            type_arg.push((&path_segment.ident).into());
            // println!("Type Ident :: {:?}", path_segment.ident.to_string());
            type_args(&path_segment.arguments, type_arg);
        }
        syn::Type::Reference(syn::TypeReference { ref elem, .. }) => {
            match elem.as_ref() {
                syn::Type::Path(syn::TypePath { ref path, .. }) => {
                    let path_segment: &syn::PathSegment =
                        path.segments.last().unwrap().into_value();
                    type_arg.push((&path_segment.ident).into());
                    // println!("Ref Type Ident :: {:?}", path_segment.ident.to_string());
                    type_args(&path_segment.arguments, type_arg);
                }
                syn::Type::Reference(syn::TypeReference { ref elem, .. }) => {
                    find_field_type(elem.as_ref(), type_arg);
                }
                _ => {}
            };
        }
        _ => panic!(
            "Type `{:?}` of field `{}` not supported",
            "field.ty", "field_ident"
        ),
    };
}

fn type_args(path_args: &syn::PathArguments, type_arg: &mut Vec<types::RustType>) {
    match path_args {
        syn::PathArguments::AngleBracketed(syn::AngleBracketedGenericArguments {
            ref args,
            ..
        }) => {
            for x in args.iter() {
                match x {
                    syn::GenericArgument::Type(syn::Type::Array(syn::TypeArray { .. })) => {
                        unimplemented!("syn::Type::Array unimplemented")
                    }
                    syn::GenericArgument::Type(syn::Type::BareFn(syn::TypeBareFn { .. })) => {
                        unimplemented!("syn::Type::BareFn unimplemented")
                    }
                    syn::GenericArgument::Type(syn::Type::Group(syn::TypeGroup { .. })) => {
                        unimplemented!("syn::Type::Group unimplemented")
                    }
                    syn::GenericArgument::Type(syn::Type::ImplTrait(syn::TypeImplTrait {
                        ..
                    })) => unimplemented!("syn::Type::ImplTrait unimplemented"),
                    syn::GenericArgument::Type(syn::Type::Path(syn::TypePath {
                        ref path, ..
                    })) => {
                        let path_segment: &syn::PathSegment =
                            path.segments.last().unwrap().into_value();
                        type_arg.push((&path_segment.ident).into());
                        type_args(&path_segment.arguments, type_arg);
                    }
                    _ => {}
                }
            }
        }
        syn::PathArguments::Parenthesized(ref _paren) => {
            unimplemented!("syn::PathArguments::Parenthesized unimplemented")
        }
        syn::PathArguments::None => {
            return;
        }
    };
}