1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use epaint::{Pos2, Shape, Stroke, Vec2};
use std::ops::{Bound, RangeBounds, RangeInclusive};

use crate::plot::transform::PlotBounds;

/// A value in the value-space of the plot.
///
/// Uses f64 for improved accuracy to enable plotting
/// large values (e.g. unix time on x axis).
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Value {
    /// This is often something monotonically increasing, such as time, but doesn't have to be.
    /// Goes from left to right.
    pub x: f64,
    /// Goes from bottom to top (inverse of everything else in egui!).
    pub y: f64,
}

impl Value {
    #[inline(always)]
    pub fn new(x: impl Into<f64>, y: impl Into<f64>) -> Self {
        Self {
            x: x.into(),
            y: y.into(),
        }
    }

    #[inline(always)]
    pub fn to_pos2(self) -> Pos2 {
        Pos2::new(self.x as f32, self.y as f32)
    }

    #[inline(always)]
    pub fn to_vec2(self) -> Vec2 {
        Vec2::new(self.x as f32, self.y as f32)
    }
}

// ----------------------------------------------------------------------------

#[derive(Debug, PartialEq, Clone, Copy)]
pub enum LineStyle {
    Solid,
    Dotted { spacing: f32 },
    Dashed { length: f32 },
}

impl LineStyle {
    pub fn dashed_loose() -> Self {
        Self::Dashed { length: 10.0 }
    }

    pub fn dashed_dense() -> Self {
        Self::Dashed { length: 5.0 }
    }

    pub fn dotted_loose() -> Self {
        Self::Dotted { spacing: 10.0 }
    }

    pub fn dotted_dense() -> Self {
        Self::Dotted { spacing: 5.0 }
    }

    pub(super) fn style_line(
        &self,
        line: Vec<Pos2>,
        mut stroke: Stroke,
        highlight: bool,
        shapes: &mut Vec<Shape>,
    ) {
        match line.len() {
            0 => {}
            1 => {
                let mut radius = stroke.width / 2.0;
                if highlight {
                    radius *= 2f32.sqrt();
                }
                shapes.push(Shape::circle_filled(line[0], radius, stroke.color));
            }
            _ => {
                match self {
                    LineStyle::Solid => {
                        if highlight {
                            stroke.width *= 2.0;
                        }
                        shapes.push(Shape::line(line, stroke));
                    }
                    LineStyle::Dotted { spacing } => {
                        // Take the stroke width for the radius even though it's not "correct", otherwise
                        // the dots would become too small.
                        let mut radius = stroke.width;
                        if highlight {
                            radius *= 2f32.sqrt();
                        }
                        shapes.extend(Shape::dotted_line(&line, stroke.color, *spacing, radius));
                    }
                    LineStyle::Dashed { length } => {
                        if highlight {
                            stroke.width *= 2.0;
                        }
                        let golden_ratio = (5.0_f32.sqrt() - 1.0) / 2.0; // 0.61803398875
                        shapes.extend(Shape::dashed_line(
                            &line,
                            stroke,
                            *length,
                            length * golden_ratio,
                        ));
                    }
                }
            }
        }
    }
}

impl ToString for LineStyle {
    fn to_string(&self) -> String {
        match self {
            LineStyle::Solid => "Solid".into(),
            LineStyle::Dotted { spacing } => format!("Dotted{}Px", spacing),
            LineStyle::Dashed { length } => format!("Dashed{}Px", length),
        }
    }
}

// ----------------------------------------------------------------------------

/// Determines whether a plot element is vertically or horizontally oriented.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Orientation {
    Horizontal,
    Vertical,
}

impl Default for Orientation {
    fn default() -> Self {
        Self::Vertical
    }
}

// ----------------------------------------------------------------------------

#[derive(Default)]
pub struct Values {
    pub(super) values: Vec<Value>,
    generator: Option<ExplicitGenerator>,
}

impl Values {
    pub fn from_values(values: Vec<Value>) -> Self {
        Self {
            values,
            generator: None,
        }
    }

    pub fn from_values_iter(iter: impl Iterator<Item = Value>) -> Self {
        Self::from_values(iter.collect())
    }

    /// Draw a line based on a function `y=f(x)`, a range (which can be infinite) for x and the number of points.
    pub fn from_explicit_callback(
        function: impl Fn(f64) -> f64 + 'static,
        x_range: impl RangeBounds<f64>,
        points: usize,
    ) -> Self {
        let start = match x_range.start_bound() {
            Bound::Included(x) | Bound::Excluded(x) => *x,
            Bound::Unbounded => f64::NEG_INFINITY,
        };
        let end = match x_range.end_bound() {
            Bound::Included(x) | Bound::Excluded(x) => *x,
            Bound::Unbounded => f64::INFINITY,
        };
        let x_range = start..=end;

        let generator = ExplicitGenerator {
            function: Box::new(function),
            x_range,
            points,
        };

        Self {
            values: Vec::new(),
            generator: Some(generator),
        }
    }

    /// Draw a line based on a function `(x,y)=f(t)`, a range for t and the number of points.
    /// The range may be specified as start..end or as start..=end.
    pub fn from_parametric_callback(
        function: impl Fn(f64) -> (f64, f64),
        t_range: impl RangeBounds<f64>,
        points: usize,
    ) -> Self {
        let start = match t_range.start_bound() {
            Bound::Included(x) => x,
            Bound::Excluded(_) => unreachable!(),
            Bound::Unbounded => panic!("The range for parametric functions must be bounded!"),
        };
        let end = match t_range.end_bound() {
            Bound::Included(x) | Bound::Excluded(x) => x,
            Bound::Unbounded => panic!("The range for parametric functions must be bounded!"),
        };
        let last_point_included = matches!(t_range.end_bound(), Bound::Included(_));
        let increment = if last_point_included {
            (end - start) / (points - 1) as f64
        } else {
            (end - start) / points as f64
        };
        let values = (0..points).map(|i| {
            let t = start + i as f64 * increment;
            let (x, y) = function(t);
            Value { x, y }
        });
        Self::from_values_iter(values)
    }

    /// From a series of y-values.
    /// The x-values will be the indices of these values
    pub fn from_ys_f32(ys: &[f32]) -> Self {
        let values: Vec<Value> = ys
            .iter()
            .enumerate()
            .map(|(i, &y)| Value {
                x: i as f64,
                y: y as f64,
            })
            .collect();
        Self::from_values(values)
    }

    /// Returns true if there are no data points available and there is no function to generate any.
    pub(crate) fn is_empty(&self) -> bool {
        self.generator.is_none() && self.values.is_empty()
    }

    /// If initialized with a generator function, this will generate `n` evenly spaced points in the
    /// given range.
    pub(super) fn generate_points(&mut self, x_range: RangeInclusive<f64>) {
        if let Some(generator) = self.generator.take() {
            if let Some(intersection) = Self::range_intersection(&x_range, &generator.x_range) {
                let increment =
                    (intersection.end() - intersection.start()) / (generator.points - 1) as f64;
                self.values = (0..generator.points)
                    .map(|i| {
                        let x = intersection.start() + i as f64 * increment;
                        let y = (generator.function)(x);
                        Value { x, y }
                    })
                    .collect();
            }
        }
    }

    /// Returns the intersection of two ranges if they intersect.
    fn range_intersection(
        range1: &RangeInclusive<f64>,
        range2: &RangeInclusive<f64>,
    ) -> Option<RangeInclusive<f64>> {
        let start = range1.start().max(*range2.start());
        let end = range1.end().min(*range2.end());
        (start < end).then(|| start..=end)
    }

    pub(super) fn get_bounds(&self) -> PlotBounds {
        if self.values.is_empty() {
            if let Some(generator) = &self.generator {
                generator.estimate_bounds()
            } else {
                PlotBounds::NOTHING
            }
        } else {
            let mut bounds = PlotBounds::NOTHING;
            for value in &self.values {
                bounds.extend_with(value);
            }
            bounds
        }
    }
}

// ----------------------------------------------------------------------------

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum MarkerShape {
    Circle,
    Diamond,
    Square,
    Cross,
    Plus,
    Up,
    Down,
    Left,
    Right,
    Asterisk,
}

impl MarkerShape {
    /// Get a vector containing all marker shapes.
    pub fn all() -> impl ExactSizeIterator<Item = MarkerShape> {
        [
            Self::Circle,
            Self::Diamond,
            Self::Square,
            Self::Cross,
            Self::Plus,
            Self::Up,
            Self::Down,
            Self::Left,
            Self::Right,
            Self::Asterisk,
        ]
        .iter()
        .copied()
    }
}

// ----------------------------------------------------------------------------

/// Query the values of the plot, for geometric relations like closest checks
pub(crate) enum PlotGeometry<'a> {
    /// No geometry based on single elements (examples: text, image, horizontal/vertical line)
    None,

    /// Point values (X-Y graphs)
    Points(&'a [Value]),

    /// Rectangles (examples: boxes or bars)
    // Has currently no data, as it would require copying rects or iterating a list of pointers.
    // Instead, geometry-based functions are directly implemented in the respective PlotItem impl.
    Rects,
}

// ----------------------------------------------------------------------------

/// Describes a function y = f(x) with an optional range for x and a number of points.
struct ExplicitGenerator {
    function: Box<dyn Fn(f64) -> f64>,
    x_range: RangeInclusive<f64>,
    points: usize,
}

impl ExplicitGenerator {
    fn estimate_bounds(&self) -> PlotBounds {
        let min_x = *self.x_range.start();
        let max_x = *self.x_range.end();
        let min_y = (self.function)(min_x);
        let max_y = (self.function)(max_x);
        // TODO: sample some more points
        PlotBounds {
            min: [min_x, min_y],
            max: [max_x, max_y],
        }
    }
}

// ----------------------------------------------------------------------------

/// Result of [`super::PlotItem::find_closest()`] search, identifies an element inside the item for immediate use
pub(crate) struct ClosestElem {
    /// Position of hovered-over value (or bar/box-plot/...) in PlotItem
    pub index: usize,

    /// Squared distance from the mouse cursor (needed to compare against other PlotItems, which might be nearer)
    pub dist_sq: f32,
}