1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use log::*;
use std::convert::TryFrom;
use std::fmt;

use crate::{machine, Analysis, Applier, EGraph, Id, Language, RecExpr, Searcher, Subst, Var};

/// A pattern that can function as either a [`Searcher`] or [`Applier`].
///
/// A [`Pattern`] is essentially a for-all quantified expression with
/// [`Var`]s as the variables (in the logical sense).
///
/// When creating a [`Rewrite`], the most common thing to use as either
/// the left hand side (the [`Searcher`]) or the right hand side
/// (the [`Applier`]) is a [`Pattern`].
///
/// As a [`Searcher`], a [`Pattern`] does the intuitive
/// thing.
/// Here is a somewhat verbose formal-ish statement:
/// Searching for a pattern in an egraph yields substitutions
/// ([`Subst`]s) _s_ such that, for any _s'_—where instead of
/// mapping a variables to an eclass as _s_ does, _s'_ maps
/// a variable to an arbitrary expression represented by that
/// eclass—_p[s']_ (the pattern under substitution _s'_) is also
/// represented by the egraph.
///
/// As an [`Applier`], a [`Pattern`] performs the given substitution
/// and adds the result to the [`EGraph`].
///
/// Importantly, [`Pattern`] implements [`FromStr`] if the
/// [`Language`] does.
/// This is probably how you'll create most [`Pattern`]s.
///
/// ```
/// use egg::*;
/// define_language! {
///     enum Math {
///         Num(i32),
///         "+" = Add([Id; 2]),
///     }
/// }
///
/// let mut egraph = EGraph::<Math, ()>::default();
/// let a11 = egraph.add_expr(&"(+ 1 1)".parse().unwrap());
/// let a22 = egraph.add_expr(&"(+ 2 2)".parse().unwrap());
///
/// // use Var syntax (leading question mark) to get a
/// // variable in the Pattern
/// let same_add: Pattern<Math> = "(+ ?a ?a)".parse().unwrap();
///
/// // Rebuild before searching
/// egraph.rebuild();
///
/// // This is the search method from the Searcher trait
/// let matches = same_add.search(&egraph);
/// let matched_eclasses: Vec<Id> = matches.iter().map(|m| m.eclass).collect();
/// assert_eq!(matched_eclasses, vec![a11, a22]);
/// ```
///
/// [`Pattern`]: struct.Pattern.html
/// [`Rewrite`]: struct.Rewrite.html
/// [`EGraph`]: struct.EGraph.html
/// [`Subst`]: struct.Subst.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [`Var`]: struct.Var.html
/// [`Searcher`]: trait.Searcher.html
/// [`Applier`]: trait.Applier.html
/// [`Language`]: trait.Language.html
#[derive(Debug, PartialEq, Clone)]
pub struct Pattern<L> {
    /// The actual pattern as a [`RecExpr`](struct.RecExpr.html)
    pub ast: PatternAst<L>,
    program: machine::Program<L>,
}

/// A [`RecExpr`](struct.RecExpr.html) that represents a
/// [`Pattern`](struct.Pattern.html).
pub type PatternAst<L> = RecExpr<ENodeOrVar<L>>;

impl<L: Language> Pattern<L> {
    /// Returns a list of the [`Var`](struct.Var.html)s in this pattern.
    pub fn vars(&self) -> Vec<Var> {
        let mut vars = vec![];
        for n in self.ast.as_ref() {
            if let ENodeOrVar::Var(v) = n {
                if !vars.contains(v) {
                    vars.push(*v)
                }
            }
        }
        vars
    }

    /// Pretty print this pattern as a sexp with the given width
    pub fn pretty(&self, width: usize) -> String {
        self.ast.pretty(width)
    }
}

/// The language of [`Pattern`]s.
///
/// [`Pattern`]: struct.Pattern.html
#[derive(Debug, Hash, PartialEq, Eq, Clone, PartialOrd, Ord)]
pub enum ENodeOrVar<L> {
    /// An enode from the underlying [`Language`](trait.Language.html)
    ENode(L),
    /// A pattern variable
    Var(Var),
}

impl<L: Language> Language for ENodeOrVar<L> {
    fn matches(&self, _other: &Self) -> bool {
        panic!("Should never call this")
    }

    fn children(&self) -> &[Id] {
        match self {
            ENodeOrVar::ENode(e) => e.children(),
            ENodeOrVar::Var(_) => &[],
        }
    }

    fn children_mut(&mut self) -> &mut [Id] {
        match self {
            ENodeOrVar::ENode(e) => e.children_mut(),
            ENodeOrVar::Var(_) => &mut [],
        }
    }

    fn from_op_str(op_str: &str, children: Vec<Id>) -> Result<Self, String> {
        if op_str.starts_with('?') && op_str.len() > 1 {
            if children.is_empty() {
                op_str
                    .parse()
                    .map(ENodeOrVar::Var)
                    .map_err(|err| format!("Failed to parse var: {}", err))
            } else {
                Err(format!(
                    "Tried to parse pattern variable '{}' in the op position",
                    op_str
                ))
            }
        } else {
            L::from_op_str(op_str, children).map(ENodeOrVar::ENode)
        }
    }

    fn display_op(&self) -> &dyn std::fmt::Display {
        match self {
            ENodeOrVar::ENode(e) => e.display_op(),
            ENodeOrVar::Var(v) => v,
        }
    }
}

impl<L: Language> std::str::FromStr for Pattern<L> {
    type Err = String;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        PatternAst::from_str(s).map(Self::from)
    }
}

impl<'a, L: Language> From<&'a [L]> for Pattern<L> {
    fn from(expr: &'a [L]) -> Self {
        let nodes: Vec<_> = expr.iter().cloned().map(ENodeOrVar::ENode).collect();
        let ast = RecExpr::from(nodes);
        Self::from(ast)
    }
}

impl<'a, L: Language> From<PatternAst<L>> for Pattern<L> {
    fn from(ast: PatternAst<L>) -> Self {
        let program = machine::Program::compile_from_pat(&ast);
        Pattern { ast, program }
    }
}

impl<L: Language> TryFrom<Pattern<L>> for RecExpr<L> {
    type Error = Var;
    fn try_from(pat: Pattern<L>) -> Result<Self, Self::Error> {
        let nodes = pat.ast.as_ref().iter().cloned();
        let ns: Result<Vec<_>, _> = nodes
            .map(|n| match n {
                ENodeOrVar::ENode(n) => Ok(n),
                ENodeOrVar::Var(v) => Err(v),
            })
            .collect();
        ns.map(RecExpr::from)
    }
}

impl<L: Language> fmt::Display for Pattern<L> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.ast)
    }
}

/// The result of searching a [`Searcher`] over one eclass.
///
/// Note that one [`SearchMatches`] can contain many found
/// substititions. So taking the length of a list of [`SearchMatches`]
/// tells you how many eclasses something was matched in, _not_ how
/// many matches were found total.
///
/// [`SearchMatches`]: struct.SearchMatches.html
/// [`Searcher`]: trait.Searcher.html
#[derive(Debug)]
pub struct SearchMatches {
    /// The eclass id that these matches were found in.
    pub eclass: Id,
    /// The matches themselves.
    pub substs: Vec<Subst>,
}

impl<L: Language, A: Analysis<L>> Searcher<L, A> for Pattern<L> {
    fn search(&self, egraph: &EGraph<L, A>) -> Vec<SearchMatches> {
        match self.ast.as_ref().last().unwrap() {
            ENodeOrVar::ENode(e) => {
                #[allow(clippy::mem_discriminant_non_enum)]
                let key = std::mem::discriminant(e);
                match egraph.classes_by_op.get(&key) {
                    None => vec![],
                    Some(ids) => ids
                        .iter()
                        .filter_map(|&id| self.search_eclass(egraph, id))
                        .collect(),
                }
            }
            ENodeOrVar::Var(_) => egraph
                .classes()
                .filter_map(|e| self.search_eclass(egraph, e.id))
                .collect(),
        }
    }

    fn search_eclass(&self, egraph: &EGraph<L, A>, eclass: Id) -> Option<SearchMatches> {
        let substs = self.program.run(egraph, eclass);
        if substs.is_empty() {
            None
        } else {
            Some(SearchMatches { eclass, substs })
        }
    }

    fn vars(&self) -> Vec<Var> {
        Pattern::vars(self)
    }
}

impl<L, A> Applier<L, A> for Pattern<L>
where
    L: Language,
    A: Analysis<L>,
{
    fn apply_one(&self, egraph: &mut EGraph<L, A>, _: Id, subst: &Subst) -> Vec<Id> {
        let id = apply_pat(self.ast.as_ref(), egraph, subst);
        vec![id]
    }

    fn vars(&self) -> Vec<Var> {
        Pattern::vars(self)
    }
}

fn apply_pat<L: Language, A: Analysis<L>>(
    pat: &[ENodeOrVar<L>],
    egraph: &mut EGraph<L, A>,
    subst: &Subst,
) -> Id {
    trace!("apply_rec {:2?} {:?}", pat, subst);

    let result = match pat.last().unwrap() {
        ENodeOrVar::Var(w) => subst[*w],
        ENodeOrVar::ENode(e) => {
            let n = e
                .clone()
                .map_children(|child| apply_pat(&pat[..usize::from(child) + 1], egraph, subst));
            trace!("adding: {:?}", n);
            egraph.add(n)
        }
    };

    trace!("result: {:?}", result);
    result
}

#[cfg(test)]
mod tests {

    use crate::{SymbolLang as S, *};

    type EGraph = crate::EGraph<S, ()>;

    #[test]
    fn simple_match() {
        crate::init_logger();
        let mut egraph = EGraph::default();

        let x = egraph.add(S::leaf("x"));
        let y = egraph.add(S::leaf("y"));
        let plus = egraph.add(S::new("+", vec![x, y]));

        let z = egraph.add(S::leaf("z"));
        let w = egraph.add(S::leaf("w"));
        let plus2 = egraph.add(S::new("+", vec![z, w]));

        egraph.union(plus, plus2);
        egraph.rebuild();

        let commute_plus = rewrite!(
            "commute_plus";
            "(+ ?a ?b)" => "(+ ?b ?a)"
        );

        let matches = commute_plus.search(&egraph);
        let n_matches: usize = matches.iter().map(|m| m.substs.len()).sum();
        assert_eq!(n_matches, 2, "matches is wrong: {:#?}", matches);

        let applications = commute_plus.apply(&mut egraph, &matches);
        egraph.rebuild();
        assert_eq!(applications.len(), 2);

        let actual_substs: Vec<Subst> = matches.iter().flat_map(|m| m.substs.clone()).collect();

        println!("Here are the substs!");
        for m in &actual_substs {
            println!("substs: {:?}", m);
        }

        egraph.dot().to_dot("target/simple-match.dot").unwrap();

        use crate::extract::{AstSize, Extractor};

        let mut ext = Extractor::new(&egraph, AstSize);
        let (_, best) = ext.find_best(plus);
        eprintln!("Best: {:#?}", best);
    }
}