1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
use std::convert::TryFrom;
use std::fmt::{self, Debug, Display};
use std::hash::Hash;

use crate::{EGraph, Id, Symbol};

use symbolic_expressions::Sexp;

/// Trait that defines a Language whose terms will be in the [`EGraph`].
///
/// Check out the [`define_language!`] macro for an easy way to create
/// a [`Language`].
///
/// Note that the default implementations of
/// [`from_op_str`](trait.Language.html#method.from_op_str) and
/// [`display_op`](trait.Language.html#method.display_op) panic. You
/// should override them if you want to parse or pretty-print expressions.
/// [`define_language!`] implements these for you.
///
/// See [`SymbolLang`](struct.SymbolLang.html) for quick-and-dirty use cases.
///
/// [`define_language!`]: macro.define_language.html
/// [`Language`]: trait.Language.html
/// [`EGraph`]: struct.EGraph.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html
#[allow(clippy::len_without_is_empty)]
pub trait Language: Debug + Clone + Eq + Ord + Hash {
    /// Returns true if this enode matches another enode.
    /// This should only consider the operator, not the children `Id`s.
    fn matches(&self, other: &Self) -> bool;

    /// Return a slice of the children `Id`s.
    fn children(&self) -> &[Id];

    /// Return a mutable slice of the children `Id`s.
    fn children_mut(&mut self) -> &mut [Id];

    /// Runs a given function on each child `Id`.
    fn for_each<F: FnMut(Id)>(&self, f: F) {
        self.children().iter().copied().for_each(f)
    }

    /// Runs a given function on each child `Id`, allowing mutation of that `Id`.
    fn for_each_mut<F: FnMut(&mut Id)>(&mut self, f: F) {
        self.children_mut().iter_mut().for_each(f)
    }

    /// Returns something that will print the operator.
    ///
    /// Default implementation panics, so make sure to implement this if you
    /// want to print `Language` elements.
    /// The [`define_language!`](macro.define_language.html) macro will
    /// implement this for you.
    fn display_op(&self) -> &dyn Display {
        unimplemented!("display_op not implemented")
    }

    /// Given a string for the operator and the children, tries to make an
    /// enode.
    ///
    /// Default implementation panics, so make sure to implement this if you
    /// want to parse `Language` elements.
    /// The [`define_language!`](macro.define_language.html) macro will
    /// implement this for you.
    #[allow(unused_variables)]
    fn from_op_str(op_str: &str, children: Vec<Id>) -> Result<Self, String> {
        unimplemented!("from_op_str not implemented")
    }

    /// Returns the number of the children this enode has.
    ///
    /// The default implementation uses `fold` to accumulate the number of
    /// children.
    fn len(&self) -> usize {
        self.children().len()
    }

    /// Returns true if this enode has no children.
    fn is_leaf(&self) -> bool {
        self.children().is_empty()
    }

    /// Runs a given function to replace the children.
    fn update_children<F: FnMut(Id) -> Id>(&mut self, mut f: F) {
        self.for_each_mut(|id| *id = f(*id))
    }

    /// Creates a new enode with children determined by the given function.
    fn map_children<F: FnMut(Id) -> Id>(mut self, f: F) -> Self {
        self.update_children(f);
        self
    }

    /// Folds over the children, given an initial accumulator.
    fn fold<F, T>(&self, init: T, mut f: F) -> T
    where
        F: FnMut(T, Id) -> T,
        T: Clone,
    {
        let mut acc = init;
        self.for_each(|id| acc = f(acc.clone(), id));
        acc
    }

    /// Make a `RecExpr` converting this enodes children to `RecExpr`s
    ///
    /// # Example
    /// ```
    /// # use egg::*;
    /// let a_plus_2: RecExpr<SymbolLang> = "(+ a 2)".parse().unwrap();
    /// // here's an enode with some meaningless child ids
    /// let enode = SymbolLang::new("*", vec![Id::from(0), Id::from(0)]);
    /// // make a new recexpr, replacing enode's childen with a_plus_2
    /// let recexpr = enode.to_recexpr(|_id| a_plus_2.as_ref());
    /// assert_eq!(recexpr, "(* (+ a 2) (+ a 2))".parse().unwrap())
    /// ```
    fn to_recexpr<'a, F>(&self, mut child_recexpr: F) -> RecExpr<Self>
    where
        Self: 'a,
        F: FnMut(Id) -> &'a [Self],
    {
        fn build<L: Language>(to: &mut RecExpr<L>, from: &[L]) -> Id {
            let last = from.last().unwrap().clone();
            let new_node = last.map_children(|id| {
                let i = usize::from(id) + 1;
                build(to, &from[0..i])
            });
            to.add(new_node)
        }

        let mut expr = RecExpr::default();
        let node = self
            .clone()
            .map_children(|id| build(&mut expr, child_recexpr(id)));
        expr.add(node);
        expr
    }
}

/// A marker that defines acceptable children types for [`define_language!`].
///
/// See [`define_language!`] for more details.
/// You should not have to implement this trait.
///
/// [`define_language!`]: macro.define_language.html
pub trait LanguageChildren {
    /// Checks if there are no children.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
    /// Returns the number of children.
    fn len(&self) -> usize;
    /// Checks if n is an acceptable number of children for this type.
    fn can_be_length(n: usize) -> bool;
    /// Create an instance of this type from a `Vec<Id>`,
    /// with the guarantee that can_be_length is already true on the `Vec`.
    fn from_vec(v: Vec<Id>) -> Self;
    /// Returns a slice of the children `Id`s.
    fn as_slice(&self) -> &[Id];
    /// Returns a mutable slice of the children `Id`s.
    fn as_mut_slice(&mut self) -> &mut [Id];
}

macro_rules! impl_array {
    () => {};
    ($n:literal, $($rest:tt)*) => {
        impl LanguageChildren for [Id; $n] {
            fn len(&self) -> usize                   { <[Id]>::len(self) }
            fn can_be_length(n: usize) -> bool       { n == $n }
            fn from_vec(v: Vec<Id>) -> Self          { Self::try_from(v.as_slice()).unwrap() }
            fn as_slice(&self) -> &[Id]              { self }
            fn as_mut_slice(&mut self) -> &mut [Id]  { self }
        }
        impl_array!($($rest)*);
    };
}

impl_array!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,);

#[rustfmt::skip]
impl LanguageChildren for Box<[Id]> {
    fn len(&self) -> usize                   { <[Id]>::len(self) }
    fn can_be_length(_: usize) -> bool       { true }
    fn from_vec(v: Vec<Id>) -> Self          { v.into() }
    fn as_slice(&self) -> &[Id]              { self }
    fn as_mut_slice(&mut self) -> &mut [Id]  { self }
}

#[rustfmt::skip]
impl LanguageChildren for Vec<Id> {
    fn len(&self) -> usize                   { <[Id]>::len(self) }
    fn can_be_length(_: usize) -> bool       { true }
    fn from_vec(v: Vec<Id>) -> Self          { v }
    fn as_slice(&self) -> &[Id]              { self }
    fn as_mut_slice(&mut self) -> &mut [Id]  { self }
}

#[rustfmt::skip]
impl LanguageChildren for Id {
    fn len(&self) -> usize                   { 1 }
    fn can_be_length(n: usize) -> bool       { n == 1 }
    fn from_vec(v: Vec<Id>) -> Self          { v[0] }
    fn as_slice(&self) -> &[Id]              { std::slice::from_ref(self) }
    fn as_mut_slice(&mut self) -> &mut [Id]  { std::slice::from_mut(self) }
}

/// A recursive expression from a user-defined [`Language`].
///
/// This conceptually represents a recursive expression, but it's actually just
/// a list of enodes.
///
/// [`RecExpr`]s must satisfy the invariant that enodes' children must refer to
/// elements that come before it in the list.
///
/// If the `serde-1` feature is enabled, this implements
/// [`serde::Serialize`][ser].
///
/// [`RecExpr`]: struct.RecExpr.html
/// [`Language`]: trait.Language.html
/// [ser]: https://docs.rs/serde/latest/serde/trait.Serialize.html
/// [pretty]: struct.RecExpr.html#method.pretty
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct RecExpr<L> {
    nodes: Vec<L>,
}

#[cfg(feature = "serde-1")]
impl<L: Language> serde::Serialize for RecExpr<L> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let s = self.to_sexp(self.nodes.len() - 1).to_string();
        serializer.serialize_str(&s)
    }
}

impl<L> Default for RecExpr<L> {
    fn default() -> Self {
        Self::from(vec![])
    }
}

impl<L> AsRef<[L]> for RecExpr<L> {
    fn as_ref(&self) -> &[L] {
        &self.nodes
    }
}

impl<L> From<Vec<L>> for RecExpr<L> {
    fn from(nodes: Vec<L>) -> Self {
        Self { nodes }
    }
}

impl<L: Language> RecExpr<L> {
    /// Adds a given enode to this `RecExpr`.
    /// The enode's children `Id`s must refer to elements already in this list.
    pub fn add(&mut self, node: L) -> Id {
        debug_assert!(
            node.children()
                .iter()
                .all(|&id| usize::from(id) < self.nodes.len()),
            "node {:?} has children not in this expr: {:?}",
            node,
            self
        );
        self.nodes.push(node);
        Id::from(self.nodes.len() - 1)
    }
}

impl<L: Language> Display for RecExpr<L> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.nodes.is_empty() {
            write!(f, "()")
        } else {
            let s = self.to_sexp(self.nodes.len() - 1).to_string();
            write!(f, "{}", s)
        }
    }
}

impl<L: Language> RecExpr<L> {
    fn to_sexp(&self, i: usize) -> Sexp {
        let node = &self.nodes[i];
        let op = Sexp::String(node.display_op().to_string());
        if node.is_leaf() {
            op
        } else {
            let mut vec = vec![op];
            node.for_each(|id| vec.push(self.to_sexp(id.into())));
            Sexp::List(vec)
        }
    }

    /// Pretty print with a maximum line length.
    ///
    /// This gives you a nice, indented, pretty-printed s-expression.
    ///
    /// # Example
    /// ```
    /// # use egg::*;
    /// let e: RecExpr<SymbolLang> = "(* (+ 2 2) (+ x y))".parse().unwrap();
    /// assert_eq!(e.pretty(10), "
    /// (*
    ///   (+ 2 2)
    ///   (+ x y))
    /// ".trim());
    /// ```
    pub fn pretty(&self, width: usize) -> String {
        use std::fmt::{Result, Write};
        let sexp = self.to_sexp(self.nodes.len() - 1);

        fn pp(buf: &mut String, sexp: &Sexp, width: usize, level: usize) -> Result {
            if let Sexp::List(list) = sexp {
                let indent = sexp.to_string().len() > width;
                write!(buf, "(")?;

                for (i, val) in list.iter().enumerate() {
                    if indent && i > 0 {
                        writeln!(buf)?;
                        for _ in 0..level {
                            write!(buf, "  ")?;
                        }
                    }
                    pp(buf, val, width, level + 1)?;
                    if !indent && i < list.len() - 1 {
                        write!(buf, " ")?;
                    }
                }

                write!(buf, ")")?;
                Ok(())
            } else {
                // I don't care about quotes
                write!(buf, "{}", sexp.to_string().trim_matches('"'))
            }
        }

        let mut buf = String::new();
        pp(&mut buf, &sexp, width, 1).unwrap();
        buf
    }
}

macro_rules! bail {
    ($s:literal $(,)?) => {
        return Err($s.into())
    };
    ($s:literal, $($args:expr),+) => {
        return Err(format!($s, $($args),+).into())
    };
}

impl<L: Language> std::str::FromStr for RecExpr<L> {
    type Err = String;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        fn parse_sexp_into<L: Language>(sexp: &Sexp, expr: &mut RecExpr<L>) -> Result<Id, String> {
            match sexp {
                Sexp::Empty => Err("Found empty s-expression".into()),
                Sexp::String(s) => {
                    let node = L::from_op_str(s, vec![])?;
                    Ok(expr.add(node))
                }
                Sexp::List(list) if list.is_empty() => Err("Found empty s-expression".into()),
                Sexp::List(list) => match &list[0] {
                    Sexp::Empty => unreachable!("Cannot be in head position"),
                    Sexp::List(l) => bail!("Found a list in the head position: {:?}", l),
                    Sexp::String(op) => {
                        let arg_ids: Result<Vec<Id>, _> =
                            list[1..].iter().map(|s| parse_sexp_into(s, expr)).collect();

                        let node = L::from_op_str(op, arg_ids?).map_err(|e| {
                            format!("Failed to parse '{}', error message:\n{}", sexp, e)
                        })?;
                        Ok(expr.add(node))
                    }
                },
            }
        }

        let mut expr = RecExpr::default();
        let sexp = symbolic_expressions::parser::parse_str(s.trim()).map_err(|e| e.to_string())?;
        parse_sexp_into(&sexp, &mut expr)?;
        Ok(expr)
    }
}

/** Arbitrary data associated with an [`EClass`].

`egg` allows you to associate arbitrary data with each eclass.
The [`Analysis`] allows that data to behave well even across eclasses merges.

[`Analysis`] can prove useful in many situtations.
One common one is constant folding, a kind of partial evaluation.
In that case, the metadata is basically `Option<L>`, storing
the cheapest constant expression (if any) that's equivalent to the
enodes in this eclass.
See the test files [`math.rs`] and [`prop.rs`] for more complex
examples on this usage of [`Analysis`].

If you don't care about [`Analysis`], `()` implements it trivally,
just use that.

# Example

```
use egg::{*, rewrite as rw};

define_language! {
    enum SimpleMath {
        "+" = Add([Id; 2]),
        "*" = Mul([Id; 2]),
        Num(i32),
        Symbol(Symbol),
    }
}

// in this case, our analysis itself doens't require any data, so we can just
// use a unit struct and derive Default
#[derive(Default)]
struct ConstantFolding;
impl Analysis<SimpleMath> for ConstantFolding {
    type Data = Option<i32>;

    fn merge(&self, to: &mut Self::Data, from: Self::Data) -> bool {
        egg::merge_if_different(to, to.or(from))
    }

    fn make(egraph: &EGraph<SimpleMath, Self>, enode: &SimpleMath) -> Self::Data {
        let x = |i: &Id| egraph[*i].data;
        match enode {
            SimpleMath::Num(n) => Some(*n),
            SimpleMath::Add([a, b]) => Some(x(a)? + x(b)?),
            SimpleMath::Mul([a, b]) => Some(x(a)? * x(b)?),
            _ => None,
        }
    }

    fn modify(egraph: &mut EGraph<SimpleMath, Self>, id: Id) {
        if let Some(i) = egraph[id].data {
            let added = egraph.add(SimpleMath::Num(i));
            egraph.union(id, added);
        }
    }
}

let rules = &[
    rw!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rw!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rw!("add-0"; "(+ ?a 0)" => "?a"),
    rw!("mul-0"; "(* ?a 0)" => "0"),
    rw!("mul-1"; "(* ?a 1)" => "?a"),
];

let expr = "(+ 0 (* (+ 4 -3) foo))".parse().unwrap();
let mut runner = Runner::<SimpleMath, ConstantFolding, ()>::default().with_expr(&expr).run(rules);
let just_foo = runner.egraph.add_expr(&"foo".parse().unwrap());
assert_eq!(runner.egraph.find(runner.roots[0]), runner.egraph.find(just_foo));
```

[`Analysis`]: trait.Analysis.html
[`EClass`]: struct.EClass.html
[`ENode`]: struct.ENode.html
[`math.rs`]: https://github.com/mwillsey/egg/blob/master/tests/math.rs
[`prop.rs`]: https://github.com/mwillsey/egg/blob/master/tests/prop.rs
*/

pub trait Analysis<L: Language>: Sized {
    /// The per-[`EClass`](struct.EClass.html) data for this analysis.
    type Data: Debug;

    /// Makes a new [`Analysis`] for a given enode
    /// [`Analysis`].
    ///
    /// [`Analysis`]: trait.Analysis.html
    fn make(egraph: &EGraph<L, Self>, enode: &L) -> Self::Data;

    /// Defines how to merge two `Data`s when their containing
    /// [`EClass`]es merge.
    ///
    /// [`EClass`]: struct.EClass.html
    fn merge(&self, to: &mut Self::Data, from: Self::Data) -> bool;

    /// A hook that allows the modification of the
    /// [`EGraph`](struct.EGraph.html)
    ///
    /// By default this does nothing.
    #[allow(unused_variables)]
    fn modify(egraph: &mut EGraph<L, Self>, id: Id) {}
}

/// Replace the first with second value if they are different returning whether
/// or not something was done.
///
/// Useful for implementing
/// [`Analysis::merge`](trait.Analysis.html#tymethod.merge).
///
/// ```
/// # use egg::*;
/// let mut x = 6;
/// assert!(!merge_if_different(&mut x, 6));
/// assert!(merge_if_different(&mut x, 7));
/// assert_eq!(x, 7);
/// ```
pub fn merge_if_different<D: PartialEq>(to: &mut D, new: D) -> bool {
    if *to == new {
        false
    } else {
        *to = new;
        true
    }
}

impl<L: Language> Analysis<L> for () {
    type Data = ();
    fn make(_egraph: &EGraph<L, Self>, _enode: &L) -> Self::Data {}
    fn merge(&self, _to: &mut Self::Data, _from: Self::Data) -> bool {
        false
    }
}

/// A simple language used for testing.
#[derive(Debug, Hash, PartialEq, Eq, Clone, PartialOrd, Ord)]
pub struct SymbolLang {
    /// The operator for an enode
    pub op: Symbol,
    /// The enode's children `Id`s
    pub children: Vec<Id>,
}

impl SymbolLang {
    /// Create an enode with the given string and children
    pub fn new(op: impl Into<Symbol>, children: Vec<Id>) -> Self {
        let op = op.into();
        Self { op, children }
    }

    /// Create childless enode with the given string
    pub fn leaf(op: impl Into<Symbol>) -> Self {
        Self::new(op, vec![])
    }
}

impl Language for SymbolLang {
    fn matches(&self, other: &Self) -> bool {
        self.op == other.op && self.len() == other.len()
    }

    fn children(&self) -> &[Id] {
        &self.children
    }

    fn children_mut(&mut self) -> &mut [Id] {
        &mut self.children
    }

    fn display_op(&self) -> &dyn Display {
        &self.op
    }

    fn from_op_str(op_str: &str, children: Vec<Id>) -> Result<Self, String> {
        Ok(Self {
            op: op_str.into(),
            children,
        })
    }
}