1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use std::cmp::Ordering;
use std::fmt::Debug;

use crate::{EClass, EGraph, ENode, Id, Language, RecExpr};

use indexmap::IndexMap;

/** Extracting a single [`RecExpr`] from an [`EGraph`].

```
use egg::*;

define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Mul = "*",
    }
}

let rules: &[Rewrite<SimpleLanguage, ()>] = &[
    rewrite!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rewrite!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rewrite!("add-0"; "(+ ?a 0)" => "?a"),
    rewrite!("mul-0"; "(* ?a 0)" => "0"),
    rewrite!("mul-1"; "(* ?a 1)" => "?a"),
];

let start = "(+ 0 (* 1 10))".parse().unwrap();
let (mut egraph, root) = EGraph::from_expr(&start);

SimpleRunner::default().run(&mut egraph, &rules);

let mut extractor = Extractor::new(&egraph, AstSize);
let (best_cost, best) = extractor.find_best(root);
assert_eq!(best_cost, 1);
assert_eq!(best, "10".parse().unwrap());
```

[`RecExpr`]: struct.RecExpr.html
[`EGraph`]: struct.EGraph.html
**/
pub struct Extractor<'a, CF: CostFunction<L>, L: Language, M> {
    cost_function: CF,
    costs: IndexMap<Id, CF::Cost>,
    egraph: &'a EGraph<L, M>,
}

/** A cost function that can be used by an [`Extractor`].

To extract an expression from an [`EGraph`], the [`Extractor`]
requires a cost function to performs its greedy search.
`egg` provides the simple [`AstSize`] and [`AstDepth`] cost functions.

The example below illustrates a silly but realistic example of
implementing a cost function that is essentially AST size weighted by
the operator:
```
use egg::{*, recexpr as r};

type Lang = String;

struct SillyCostFn;
impl CostFunction<Lang> for SillyCostFn {
    type Cost = f64;
    // you're passed in an ENode whose children are costs instead of eclass ids
    fn cost(&mut self, enode: &ENode<Lang, Self::Cost>) -> Self::Cost {
        let op_cost = match enode.op.as_ref() {
            "foo" => 100.0,
            "bar" => 0.7,
            _ => 1.0
        };
        op_cost + enode.children.iter().sum::<f64>()
    }
}

let e: RecExpr<Lang> = r!("+", r!("foo"), r!("bar"), r!("baz"));
assert_eq!(SillyCostFn.cost_rec(&e), 102.7);
assert_eq!(AstSize.cost_rec(&e), 4);
assert_eq!(AstDepth.cost_rec(&e), 2);
```

[`AstSize`]: struct.AstSize.html
[`AstDepth`]: struct.AstDepth.html
[`Extractor`]: struct.Extractor.html
[`EGraph`]: struct.EGraph.html
[`ENode`]: struct.ENode.html
**/
pub trait CostFunction<L: Language> {
    /// The `Cost` type. It only requires `PartialOrd` so you can use
    /// floating point types, but failed comparisons (`NaN`s) will
    /// result in a panic.
    type Cost: PartialOrd + Debug + Clone;

    /// Calculates the cost of an [`ENode`] whose children are `Cost`s.
    ///
    /// For this to work properly, your cost function should be
    /// _monotonic_, i.e. `cost` should return a `Cost` greater than
    /// any of the child costs of the given [`ENode`].
    ///
    /// [`ENode`]: struct.ENode.html
    fn cost(&mut self, enode: &ENode<L, Self::Cost>) -> Self::Cost;

    /// Calculates the total cost of a [`RecExpr`].
    ///
    /// As provided, this just recursively calls `cost` all the way
    /// down the [`RecExpr`].
    ///
    /// [`RecExpr`]: struct.RecExpr.html
    fn cost_rec(&mut self, expr: &RecExpr<L>) -> Self::Cost {
        let child_cost = expr.as_ref().map_children(|e| self.cost_rec(&e));
        self.cost(&child_cost)
    }
}

/** A simple [`CostFunction`] that counts total ast size.

```
use egg::{*, recexpr as r};

let e: RecExpr<String> = r!("+", r!("foo"), r!("bar"), r!("baz"));
assert_eq!(AstSize.cost_rec(&e), 4);
```

[`CostFunction`]: trait.CostFunction.html
**/
pub struct AstSize;
impl<L: Language> CostFunction<L> for AstSize {
    type Cost = usize;
    fn cost(&mut self, enode: &ENode<L, Self::Cost>) -> Self::Cost {
        1 + enode.children.iter().copied().sum::<usize>()
    }
}

/** A simple [`CostFunction`] that counts maximum ast depth.

```
use egg::{*, recexpr as r};

let e: RecExpr<String> = r!("+", r!("foo"), r!("bar"), r!("baz"));
assert_eq!(AstDepth.cost_rec(&e), 2);
```

[`CostFunction`]: trait.CostFunction.html
**/
pub struct AstDepth;
impl<L: Language> CostFunction<L> for AstDepth {
    type Cost = usize;
    fn cost(&mut self, enode: &ENode<L, Self::Cost>) -> Self::Cost {
        1 + enode.children.iter().copied().max().unwrap_or(0)
    }
}

fn cmp<T: PartialOrd>(a: &Option<T>, b: &Option<T>) -> Ordering {
    // None is high
    match (a, b) {
        (None, None) => Ordering::Equal,
        (None, Some(_)) => Ordering::Greater,
        (Some(_), None) => Ordering::Less,
        (Some(a), Some(b)) => a.partial_cmp(&b).unwrap(),
    }
}

impl<'a, CF, L, M> Extractor<'a, CF, L, M>
where
    CF: CostFunction<L>,
    L: Language,
{
    /// Create a new `Extractor` given an `EGraph` and a
    /// `CostFunction`.
    ///
    /// The extraction does all the work on creation, so this function
    /// performs the greedy search for cheapest representative of each
    /// eclass.
    pub fn new(egraph: &'a EGraph<L, M>, cost_function: CF) -> Self {
        let costs = IndexMap::default();
        let mut extractor = Extractor {
            costs,
            egraph,
            cost_function,
        };
        extractor.find_costs();

        extractor
    }

    /// Find the cheapest (lowest cost) represented `RecExpr` in the
    /// given eclass.
    pub fn find_best(&mut self, eclass: Id) -> (CF::Cost, RecExpr<L>) {
        let expr = self.find_best_expr(eclass);
        let cost = self.cost_function.cost_rec(&expr);
        (cost, expr)
    }

    fn find_best_expr(&mut self, eclass: Id) -> RecExpr<L> {
        let eclass = self.egraph.find(eclass);

        let best_node = self.egraph[eclass]
            .iter()
            .min_by(|a, b| {
                let a = self.node_total_cost(a);
                let b = self.node_total_cost(b);
                cmp(&a, &b)
            })
            .expect("eclass shouldn't be empty");

        best_node
            .clone()
            .map_children(|child| self.find_best_expr(child))
            .into()
    }

    fn node_total_cost(&mut self, node: &ENode<L>) -> Option<CF::Cost> {
        let expr = node
            .map_children_result(|id| self.costs.get(&id).cloned().ok_or(()))
            .ok()?;
        Some(self.cost_function.cost(&expr))
    }

    fn find_costs(&mut self) {
        let mut did_something = true;
        while did_something {
            did_something = false;

            for class in self.egraph.classes() {
                let pass = self.make_pass(class);
                match (self.costs.get(&class.id), pass) {
                    (None, Some(cost)) => {
                        self.costs.insert(class.id, cost);
                        did_something = true;
                    }
                    (Some(old), Some(new)) if new < *old => {
                        self.costs.insert(class.id, new);
                        did_something = true;
                    }
                    _ => (),
                }
            }
        }
    }

    fn make_pass(&mut self, eclass: &EClass<L, M>) -> Option<CF::Cost> {
        eclass
            .iter()
            .map(|n| self.node_total_cost(n))
            .min_by(cmp)
            .unwrap()
    }
}