1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
use std::*;
use std::f32::consts::*;
use image::{self, GenericImage};
use rayon::prelude::*;


const TAU: f32 = PI * 2.0;

#[inline(always)]
fn clamp<T: PartialOrd>(f: T, lo: T, hi: T) -> T {
    debug_assert!(lo < hi);
    if f > hi {
        hi
    } else if f < lo {
        lo
    } else {
        f
    }
}

/// The result of a computation.
#[derive(Clone)]
pub struct Detection {
    edges: Vec<Vec<Edge>>,
}

impl Detection {
    /// Returns the width of the computed image.
    pub fn width(&self) -> usize {
        self.edges.len()
    }

    /// Returns the height of the computed image.
    pub fn height(&self) -> usize {
        self.edges[0].len()
    }

    /// Linearly interpolates the edge at the specified location.
    ///
    /// Similar to as if the edges detection were continuous.
    pub fn interpolate(&self, x: f32, y: f32) -> Edge {
        let ax = clamp(x.floor() as isize, 0, self.width() as isize - 1) as usize;
        let ay = clamp(y.floor() as isize, 0, self.height() as isize - 1) as usize;
        let bx = clamp(x.ceil() as isize, 0, self.width() as isize - 1) as usize;
        let by = clamp(y.ceil() as isize, 0, self.height() as isize - 1) as usize;
        let e1 = self.edges[ax][ay];
        let e2 = self.edges[bx][ay];
        let e3 = self.edges[ax][by];
        let e4 = self.edges[bx][by];
        let nx = (x.fract() + 1.0).fract();
        let ny = (y.fract() + 1.0).fract();

        let x1 = Edge {
            magnitude: e1.magnitude * (1.0 - nx) + e2.magnitude * nx,
            vec_x: e1.vec_x * (1.0 - nx) + e2.vec_x * nx,
            vec_y: e1.vec_y * (1.0 - nx) + e2.vec_y * nx,
        };
        let x2 = Edge {
            magnitude: e3.magnitude * (1.0 - nx) + e4.magnitude * nx,
            vec_x: e3.vec_x * (1.0 - nx) + e4.vec_x * nx,
            vec_y: e3.vec_y * (1.0 - nx) + e4.vec_y * nx,
        };
        Edge {
            magnitude: x1.magnitude * (1.0 - ny) + x2.magnitude * ny,
            vec_x: x1.vec_x * (1.0 - ny) + x2.vec_x * ny,
            vec_y: x1.vec_y * (1.0 - ny) + x2.vec_y * ny,
        }
    }

    /// Renders the detected edges to an image.
    ///
    /// The intensity of the pixel represents the magnitude of the change in brightnes while the
    /// color represents the direction.
    ///
    /// Useful for debugging.
    pub fn as_image(&self) -> image::DynamicImage {
        let img = image::RgbImage::from_fn(self.width() as u32, self.height() as u32, |x, y| {
            let (h, s, v) = {
                let edge = &self[(x as usize, y as usize)];
                ((edge.angle() + TAU) % TAU, 1.0, edge.magnitude())
            };
            let (r, g, b) = {
                // http://www.rapidtables.com/convert/color/hsv-to-rgb.htm
                let c = v * s;
                let x = c * (1.0 - ((h / FRAC_PI_3) % 2.0 - 1.0).abs());
                let m = v - c;
                let (r, g, b) = match h {
                    h if h < FRAC_PI_3            => (c, x, 0.0),
                    h if h < FRAC_PI_3 * 2.0      => (x, c, 0.0),
                    h if h < PI                   => (0.0, c, x),
                    h if h < PI + FRAC_PI_3       => (0.0, x, c),
                    h if h < PI + FRAC_PI_3 * 2.0 => (x, 0.0, c),
                    h if h < TAU                  => (c, 0.0, x),
                    _                             => unreachable!(),
                };
                (r + m, g + m, b + m)
            };
            image::Rgb { data: [
                (r * 255.0).round() as u8,
                (g * 255.0).round() as u8,
                (b * 255.0).round() as u8,
            ]}
        });
        image::DynamicImage::ImageRgb8(img)
    }
}

impl ops::Index<usize> for Detection {
    type Output = Edge;
    fn index(&self, index: usize) -> &Self::Output {
        let x = index % self.width();
        let y = index / self.height();
        &self.edges[x][y]
    }
}

impl ops::Index<(usize, usize)> for Detection {
    type Output = Edge;
    fn index(&self, index: (usize, usize)) -> &Self::Output {
        &self.edges[index.0][index.1]
    }
}


/// The computed result for a single pixel.
#[derive(Copy, Clone, Debug)]
pub struct Edge {
    vec_x: f32,
    vec_y: f32,
    magnitude: f32,
}

impl Edge {
    fn new(vec_x: f32, vec_y: f32) -> Edge {
        let vec_x = FRAC_1_SQRT_2 * clamp(vec_x, -1.0, 1.0);
        let vec_y = FRAC_1_SQRT_2 * clamp(vec_y, -1.0, 1.0);
        let magnitude = f32::hypot(vec_x, vec_y);
        debug_assert!(0.0 <= magnitude && magnitude <= 1.0);
        let frac_1_mag = if magnitude != 0.0 {
            magnitude.recip()
        } else {
            1.0
        };
        Edge {
            vec_x: vec_x * frac_1_mag,
            vec_y: vec_y * frac_1_mag,
            magnitude,
        }
    }

    /// The direction of the gradient in radians.
    ///
    /// This is a convenience function for `atan2(direction)`.
    pub fn angle(&self) -> f32 {
        f32::atan2(self.vec_y, self.vec_x)
    }

    /// Returns the direction of the edge scaled by it's magnitude.
    pub fn dir(&self) -> (f32, f32) {
        (self.vec_x * self.magnitude(), self.vec_y * self.magnitude())
    }

    /// Returns a normalized vector of the direction of the change in brightness
    ///
    /// The vector will point away from the detected line.
    /// E.g. a vertical line separating a dark area on the left and light area on the right will
    /// have it's direction point towards the light area on the right.
    pub fn dir_norm(&self) -> (f32, f32) {
        (self.vec_x, self.vec_y)
    }

    /// The absolute magnitude of the change in brightness.
    ///
    /// Between 0 and 1 inclusive.
    pub fn magnitude(&self) -> f32 {
        self.magnitude
    }
}


/// Computes the canny edges of an image.
///
/// The variable `sigma` determines the size of the filter kernel which affects the precision and
/// SNR of the computation:
///
/// * A small sigma (3.0<) creates a kernel which is able to discern fine details but is more prone
///   to noise.
/// * Larger values result in detail being lost and are thus best used for detecting large
///   features. Computation time also increases.
///
/// The `weak_threshold` and `strong_threshold` determine what detected pixels are to be regarded
/// as edges and which should be discarded. They are compared with the absolute magnitude of the
/// change in brightness.
///
/// # Panics:
/// * If either `strong_threshold` or `weak_threshold` are outisde the range of 0 to 1 inclusive.
/// * If `strong_threshold` is less than `weak_threshold`.
/// * If `image` contains no pixels (either it's width or height is 0).
pub fn canny<T: Into<image::GrayImage>>(image: T, sigma: f32, strong_threshold: f32, weak_threshold: f32) -> Detection {
    let gs_image = image.into();
    assert!(gs_image.width() > 0);
    assert!(gs_image.height() > 0);
    let edges = detect_edges(&gs_image, sigma);
    let edges = minmax_suppression(&Detection{ edges }, weak_threshold);
    let edges = hysteresis(&edges, strong_threshold, weak_threshold);
    Detection { edges }
}

/// Calculates a 2nd order 2D gaussian derivative with size sigma.
fn filter_kernel(sigma: f32) -> (usize, Vec<(f32, f32)>) {
    let size = (sigma * 10.0).round() as usize;
    let mul_2_sigma_2 = 2.0 * sigma.powi(2);
    let kernel = (0..size).flat_map(|y| {
        (0..size).map(move |x| {
            let (xf, yf) = (x as f32 - size as f32 / 2.0, y as f32 - size as f32 / 2.0);
            let g = (-(xf.powi(2) + yf.powi(2)) / mul_2_sigma_2).exp() / mul_2_sigma_2;
            (xf * g, yf * g)
        })
    }).collect();
    (size, kernel)
}

fn neighbour_pos_delta(theta: f32) -> (i32, i32) {
    let neighbours = [
        (1, 0),   // middle right
        (1, 1),   // bottom right
        (0, 1),   // center bottom
        (-1, 1),  // bottom left
        (-1, 0),  // middle left
        (-1, -1), // top left
        (0, -1),  // center top
        (1, -1),  // top right
    ];
    let n = ((theta + TAU) % TAU) / TAU;
    let i = (n * 8.0).round() as usize % 8;
    neighbours[i]
}

/// Computes the edges in an image using the Canny Method.
///
/// `sigma` determines the radius of the Gaussian kernel.
fn detect_edges(image: &image::GrayImage, sigma: f32) -> Vec<Vec<Edge>> {
    let (width, height) = (image.width() as i32, image.height() as i32);
    let (ksize, g_kernel) = filter_kernel(sigma);
    let ks = ksize as i32;
    (0..width).into_par_iter().map(|g_ix| {
        let ix = g_ix;
        let kernel = &g_kernel;
        (0..height).into_par_iter().map(move |iy| {
            let mut sum_x = 0.0;
            let mut sum_y = 0.0;

            for kyi in 0..ks {
                let ky = kyi - ks / 2;
                for kxi in 0..ks {
                    let kx = kxi - ks / 2;
                    let k = unsafe {
                        let i = (kyi * ks + kxi) as usize;
                        debug_assert!(i < kernel.len());
                        kernel.get_unchecked(i)
                    };

                    let pix = unsafe {
                        // Clamp x and y within the image bounds so no non-existing borders are be
                        // detected based on some background color outside image bounds.
                        let x = clamp(ix + kx, 0, width - 1);
                        let y = clamp(iy + ky, 0, height - 1);
                        image.unsafe_get_pixel(x as u32, y as u32).data[0] as f32
                    };
                    sum_x += pix * k.0;
                    sum_y += pix * k.1;
                }
            }
            Edge::new(sum_x / 255.0, sum_y / 255.0)
        }).collect()
    })
    .collect()
}

/// Narrows the width of detected edges down to a single pixel.
fn minmax_suppression(edges: &Detection, weak_threshold: f32) -> Vec<Vec<Edge>> {
    let (width, height) = (edges.edges.len(), edges.edges[0].len());
    (0..width).into_par_iter().map(|x| {
        (0..height).into_par_iter().map(|y| {
            let edge = edges.edges[x][y];
            if edge.magnitude < weak_threshold {
                // Skip distance computation for non-edges.
                return Edge::new(0.0, 0.0);
            }
            // Truncating the edge magnitudes helps mitigate rounding errors for thick edges.
            let truncate = |f: f32| (f * 1e5).round() * 1e-6;

            // Find out the current pixel represents the highest, most intense, point of an edge by
            // traveling in a direction perpendicular to the edge to see if there are any more
            // intense edges that are supposedly part of the current edge.
            //
            // We travel in both directions concurrently, this enables us to stop if one side
            // extends longer than the other, greatly improving performance.
            let mut select = 0;
            let mut select_flip_bit = 1;

            // The parameters and variables for each side.
            let directions = [1.0, -1.0];
            let mut distances = [0i32; 2];
            let mut seek_positions = [(x as f32, y as f32); 2];
            let mut seek_magnitudes = [truncate(edge.magnitude); 2];

            while (distances[0] - distances[1]).abs() <= 1 {
                let seek_pos = &mut seek_positions[select];
                let seek_magnitude = &mut seek_magnitudes[select];
                let direction = directions[select];

                seek_pos.0 += edge.dir_norm().0 * direction;
                seek_pos.1 += edge.dir_norm().1 * direction;
                let interpolated_magnitude = truncate(edges.interpolate(seek_pos.0, seek_pos.1).magnitude());

                let trunc_edge_magnitude = truncate(edge.magnitude);
                // Keep searching until either:
                let end =
                    // The next edge has a lesser magnitude than the reference edge.
                    interpolated_magnitude < trunc_edge_magnitude
                    // The gradient increases, meaning we are going up against an (other) edge.
                    || *seek_magnitude > trunc_edge_magnitude && interpolated_magnitude < *seek_magnitude;
                *seek_magnitude = interpolated_magnitude;
                distances[select] += 1;

                // Switch to the other side.
                select ^= select_flip_bit;
                if end {
                    if select_flip_bit == 0 {
                        break;
                    }
                    // After switching to the other side, we set the XOR bit to 0 so we stay there.
                    select_flip_bit = 0;
                }
            }

            // Equal distances denote the middle of the edge.
            // A deviation of 1 is allowed for edges over two equal pixels, in which case, the
            // outer edge (near the dark side) is preferred.
            let is_apex =
                // The distances are equal, the edge's width is odd, making the apex lie on a
                // single pixel.
                distances[0] == distances[1]
                // There is a difference of 1, the edge's width is even, spreading the apex over
                // two pixels. This is a special case to handle edges that run along either the X- or X-axis.
                || (distances[0] - distances[1] == 1 && ((1.0 - edge.vec_x.abs()).abs() < 1e-5 || (1.0 - edge.vec_y.abs()).abs() < 1e-5));
            if is_apex {
                edge
            } else {
                Edge::new(0.0, 0.0)
            }
        })
        .collect()
    })
    .collect()
}

/// Links lines together and discards noise.
fn hysteresis(edges: &Vec<Vec<Edge>>, strong_threshold: f32, weak_threshold: f32) -> Vec<Vec<Edge>> {
    assert!(0.0 < strong_threshold && strong_threshold < 1.0);
    assert!(0.0 < weak_threshold && weak_threshold < 1.0);
    assert!(weak_threshold < strong_threshold);

    let (width, height) = (edges.len(), edges.first().unwrap().len());
    let mut edges_out: Vec<Vec<Edge>> = vec![vec![Edge::new(0.0, 0.0); height]; width];
    for x in 0..width {
        for y in 0..height {
            if edges[x][y].magnitude < strong_threshold || edges_out[x][y].magnitude >= strong_threshold {
                continue;
            }

            // Follow along the edge along both sides, preserving all edges which magnitude is at
            // least weak_threshold.
            for side in [0.0, PI].into_iter() {
                let mut current_pos = (x, y);
                loop {
                    let edge = edges[current_pos.0][current_pos.1];
                    edges_out[current_pos.0][current_pos.1] = edge;
                    // Attempt to find the next line-segment of the edge in tree directions ahead.
                    let (nb_pos, nb_magnitude) = [FRAC_PI_4, 0.0, -FRAC_PI_4].into_iter()
                        .map(|bearing| {
                            neighbour_pos_delta(edge.angle() + FRAC_PI_2 + side + bearing)
                        })
                        // Filter out hypothetical neighbours that are outside image bounds.
                        .filter_map(|(nb_dx, nb_dy)| {
                            let nb_x = current_pos.0 as i32 + nb_dx;
                            let nb_y = current_pos.1 as i32 + nb_dy;
                            if 0 <= nb_x && nb_x < width as i32 && 0 <= nb_y && nb_y < height as i32 {
                                let nb = (nb_x as usize, nb_y as usize);
                                Some((nb, edges[nb.0][nb.1].magnitude))
                            } else {
                                None
                            }
                        })
                        // Select the neighbouring edge with the highest magnitude as the next
                        // line-segment.
                        .fold(((0, 0), 0.0), |(max_pos, max_mag), (pos, mag)| {
                            if mag > max_mag {
                                (pos, mag)
                            } else {
                                (max_pos, max_mag)
                            }
                        });
                    if nb_magnitude < weak_threshold || edges_out[nb_pos.0][nb_pos.1].magnitude > weak_threshold {
                        break;
                    }
                    current_pos = nb_pos;
                }
            }
        }
    }
    edges_out
}


#[cfg(test)]
mod tests {
    use super::*;

    fn edges_to_image(edges: &Vec<Vec<Edge>>) -> image::GrayImage {
        let (width, height) = (edges.len(), edges.first().unwrap().len());
        let mut image = image::GrayImage::from_pixel(width as u32, height as u32, image::Luma{ data: [0] });
        for x in 0..width {
            for y in 0..height {
                let edge = edges[x][y];
                *image.get_pixel_mut(x as u32, y as u32) = image::Luma{ data: [(edge.magnitude * 255.0).round() as u8]};
            }
        }
        image
    }

    fn canny_output_stages<T: AsRef<str>>(path: T, sigma: f32, strong_threshold: f32, weak_threshold: f32) -> Detection {
        let path = path.as_ref();
        let image = image::open(path).unwrap();
        let edges = detect_edges(&image.to_luma(), sigma);
        let intermediage_d = Detection { edges };
        let mut fd = fs::File::create(format!("{}.0-vectors.png", path)).unwrap();
        intermediage_d.as_image().save(&mut fd, image::ImageFormat::PNG).unwrap();
        edges_to_image(&intermediage_d.edges).save(format!("{}.1-edges.png", path)).unwrap();
        let edges = minmax_suppression(&intermediage_d, weak_threshold);
        edges_to_image(&edges).save(format!("{}.2-minmax.png", path)).unwrap();
        let edges = hysteresis(&edges, strong_threshold, weak_threshold);
        edges_to_image(&edges).save(format!("{}.3-hysteresis.png", path)).unwrap();
        let detection = Detection { edges };
        let mut fd = fs::File::create(format!("{}.4-result.png", path)).unwrap();
        detection.as_image().save(&mut fd, image::ImageFormat::PNG).unwrap();
        detection
    }

    #[test]
    fn neighbour_pos_delta_from_theta() {
        let neighbours = [
            (1, 0),
            (1, 1),
            (0, 1),
            (-1, 1),
            (-1, 0),
            (-1, -1),
            (0, -1),
            (1, -1),
        ];
        for nb in neighbours.iter() {
            let d = neighbour_pos_delta(f32::atan2(nb.1 as f32, nb.0 as f32));
            assert_eq!(*nb, d);
        }
    }

    #[test]
    fn edge_new() {
        let e = Edge::new(1.0, 0.0);
        assert!(1.0 - 1e-6 < e.vec_x && e.vec_x < 1.0 + 1e-6);
        assert!(-1e-5 < e.vec_y && e.vec_y < 1e-6);

        let e = Edge::new(1.0, 1.0);
        assert!(FRAC_1_SQRT_2 - 1e-5 < e.vec_x && e.vec_x < FRAC_1_SQRT_2 + 1e-6);
        assert!(FRAC_1_SQRT_2 - 1e-5 < e.vec_y && e.vec_y < FRAC_1_SQRT_2 + 1e-6);
        assert!(1.0 - 1e-6 < e.magnitude && e.magnitude < 1.0 + 1e-6);
    }

    #[test]
    fn detection_interpolate() {
        let dummy = |magnitude| Edge {
            magnitude,
            vec_x: 0.0,
            vec_y: 0.0,
        };
        let d = Detection {
            edges: vec![
                vec![dummy(2.0), dummy(8.0)],
                vec![dummy(4.0), dummy(16.0)],
            ],
        };
        assert!((d.interpolate(0.0, 0.0).magnitude() - 2.0).abs() <= 1e-6);
        assert!((d.interpolate(1.0, 0.0).magnitude() - 4.0).abs() <= 1e-6);
        assert!((d.interpolate(0.0, 1.0).magnitude() - 8.0).abs() <= 1e-6);
        assert!((d.interpolate(1.0, 1.0).magnitude() - 16.0).abs() <= 1e-6);
        assert!((d.interpolate(0.5, 0.0).magnitude() - 3.0).abs() <= 1e-6);
        assert!((d.interpolate(0.0, 0.5).magnitude() - 5.0).abs() <= 1e-6);
        assert!((d.interpolate(0.5, 1.0).magnitude() - 12.0).abs() <= 1e-6);
        assert!((d.interpolate(1.0, 0.5).magnitude() - 10.0).abs() <= 1e-6);
    }

    #[test]
    fn kernel_integral_in_bounds() {
        // The integral for the filter kernel should approximate 0.
        for sigma_i in 1..200 {
            let sigma = sigma_i as f32 / 10.0;
            let (ksize, kernel) = filter_kernel(sigma);
            assert!(ksize.pow(2) == kernel.len());
            let mut sum_x = 0.0;
            let mut sum_y = 0.0;
            for (gx, gy) in kernel {
                sum_x += gx;
                sum_y += gy;
            }
            println!("sum = ({}, {}), sigma = {}, kernel_size = {}", sum_x, sum_y, sigma, ksize);
            assert!(-0.0001 < sum_x && sum_x <= 0.0001);
            assert!(-0.0001 < sum_y && sum_y <= 0.0001);
        }
    }

    /// Tests whether a vertical line of 1px wide exists in the middle of the image.
    ///
    /// Returns the location of the line on the X-axis.
    fn detect_vertical_line(detection: &Detection) -> usize {
        // Find the line.
        let mut line_x = None;
        for x in 0..detection.width() {
            if detection.edges[x][detection.height() / 2].magnitude > 0.5 {
                if line_x.is_some() {
                    panic!("the line is thicker than 1px");
                }
                line_x = Some(x)
            }
        }
        let line_x = line_x.expect("no line detected");
        // The line should be at about the middle of the image.
        let middle = detection.width() / 2;
        assert!(middle - 1 <= line_x && line_x <= middle);
        // The line should be continuous.
        for y in 0..detection.height() {
            let edge = detection.edges[line_x][y];
            assert!(edge.magnitude > 0.0);
        }
        // The line should be the only thing detected.
        for x in 0..detection.width() {
            if x == line_x {
                continue;
            }
            for y in 0..detection.height() {
                assert!(detection.edges[x][y].magnitude == 0.0);
            }
        }
        line_x
    }

    #[test]
    fn detect_vertical_line_simple() {
        let d = canny_output_stages("testdata/line-simple.png", 1.2, 0.4, 0.05);
        let x = detect_vertical_line(&d);
        // The direction of the line's surface normal should follow the X-axis.
        for y in 0..d.height() {
            assert!(d.edges[x][y].angle().abs() < 1e-5);
        }
    }

    #[test]
    fn detect_vertical_line_fuzzy() {
        let d = canny_output_stages("testdata/line-fuzzy.png", 2.0, 0.4, 0.05);
        let x = detect_vertical_line(&d);
        // The direction of the line's surface normal should follow the X-axis.
        for y in 0..d.height() {
            assert!(d.edges[x][y].angle().abs() < 0.01);
        }
    }

    #[test]
    fn detect_vertical_line_weakening() {
        let d = canny_output_stages("testdata/line-weakening.png", 1.2, 0.7, 0.05);
        detect_vertical_line(&d);
        // The line vectors are not tested because they are distorted by the gradient.
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benchmarks {
    extern crate test;
    use super::*;

    static IMG_PATH: &str = "testdata/circle.png";

    #[bench]
    fn bench_filter_kernel_low_sigma(b: &mut test::Bencher) {
        b.iter(|| filter_kernel(1.2));
    }

    #[bench]
    fn bench_filter_kernel_high_sigma(b: &mut test::Bencher) {
        b.iter(|| filter_kernel(5.0));
    }

    #[bench]
    fn bench_detect_edges_low_sigma(b: &mut test::Bencher) {
        let image = image::open(IMG_PATH).unwrap().to_luma();
        b.iter(|| detect_edges(&image, 1.2));
    }

    #[bench]
    fn bench_detect_edges_high_sigma(b: &mut test::Bencher) {
        let image = image::open(IMG_PATH).unwrap().to_luma();
        b.iter(|| detect_edges(&image, 5.0));
    }

    #[bench]
    fn bench_minmax_suppression_low_sigma(b: &mut test::Bencher) {
        let image = image::open(IMG_PATH).unwrap().to_luma();
        let edges = Detection { edges: detect_edges(&image, 1.2) };
        b.iter(|| minmax_suppression(&edges, 0.01));
    }

    #[bench]
    fn bench_minmax_suppression_high_sigma(b: &mut test::Bencher) {
        let image = image::open(IMG_PATH).unwrap().to_luma();
        let edges = Detection { edges: detect_edges(&image, 5.0) };
        b.iter(|| minmax_suppression(&edges, 0.01));
    }

    #[bench]
    fn bench_hysteresis(b: &mut test::Bencher) {
        let image = image::open(IMG_PATH).unwrap().to_luma();
        let edges = Detection { edges: detect_edges(&image, 1.2) };
        let edges = minmax_suppression(&edges, 0.1);
        b.iter(|| hysteresis(&edges, 0.4, 0.1));
    }
}