1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2018 Isis Lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>

//! A Rust implementation of ed25519 EdDSA key generation, signing, and
//! verification.

use core::default::Default;
use core::fmt::{Debug};

use rand::CryptoRng;
use rand::Rng;

#[cfg(feature = "serde")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "serde")]
use serde::{Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Error as SerdeError;
#[cfg(feature = "serde")]
use serde::de::Visitor;

#[cfg(feature = "sha2")]
use sha2::Sha512;

use clear_on_drop::clear::Clear;

use digest::Digest;

use generic_array::typenum::U64;

use curve25519_dalek::constants;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;

use errors::SignatureError;
use errors::InternalError;

/// The length of a curve25519 EdDSA `Signature`, in bytes.
pub const SIGNATURE_LENGTH: usize = 64;

/// The length of a curve25519 EdDSA `SecretKey`, in bytes.
pub const SECRET_KEY_LENGTH: usize = 32;

/// The length of an ed25519 EdDSA `PublicKey`, in bytes.
pub const PUBLIC_KEY_LENGTH: usize = 32;

/// The length of an ed25519 EdDSA `Keypair`, in bytes.
pub const KEYPAIR_LENGTH: usize = SECRET_KEY_LENGTH + PUBLIC_KEY_LENGTH;

/// The length of the "key" portion of an "expanded" curve25519 EdDSA secret key, in bytes.
const EXPANDED_SECRET_KEY_KEY_LENGTH: usize = 32;

/// The length of the "nonce" portion of an "expanded" curve25519 EdDSA secret key, in bytes.
const EXPANDED_SECRET_KEY_NONCE_LENGTH: usize = 32;

/// The length of an "expanded" curve25519 EdDSA key, `ExpandedSecretKey`, in bytes.
pub const EXPANDED_SECRET_KEY_LENGTH: usize = EXPANDED_SECRET_KEY_KEY_LENGTH + EXPANDED_SECRET_KEY_NONCE_LENGTH;

/// An EdDSA signature.
///
/// # Note
///
/// These signatures, unlike the ed25519 signature reference implementation, are
/// "detached"—that is, they do **not** include a copy of the message which has
/// been signed.
#[allow(non_snake_case)]
#[derive(Copy, Eq, PartialEq)]
#[repr(C)]
pub struct Signature {
    /// `R` is an `EdwardsPoint`, formed by using an hash function with
    /// 512-bits output to produce the digest of:
    ///
    /// - the nonce half of the `ExpandedSecretKey`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.  The scalar is then multiplied by the distinguished
    /// basepoint to produce `R`, and `EdwardsPoint`.
    pub (crate) R: CompressedEdwardsY,

    /// `s` is a `Scalar`, formed by using an hash function with 512-bits output
    /// to produce the digest of:
    ///
    /// - the `r` portion of this `Signature`,
    /// - the `PublicKey` which should be used to verify this `Signature`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.
    pub (crate) s: Scalar,
}

impl Clone for Signature {
    fn clone(&self) -> Self { *self }
}

impl Debug for Signature {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "Signature( R: {:?}, s: {:?} )", &self.R, &self.s)
    }
}

impl Signature {
    /// Convert this `Signature` to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] {
        let mut signature_bytes: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];

        signature_bytes[..32].copy_from_slice(&self.R.as_bytes()[..]);
        signature_bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
        signature_bytes
    }

    /// Construct a `Signature` from a slice of bytes.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<Signature, SignatureError> {
        if bytes.len() != SIGNATURE_LENGTH {
            return Err(SignatureError(InternalError::BytesLengthError{
                name: "Signature", length: SIGNATURE_LENGTH }));
        }
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        lower.copy_from_slice(&bytes[..32]);
        upper.copy_from_slice(&bytes[32..]);

        if upper[31] & 224 != 0 {
            return Err(SignatureError(InternalError::ScalarFormatError));
        }

        Ok(Signature{ R: CompressedEdwardsY(lower), s: Scalar::from_bits(upper) })
    }
}

#[cfg(feature = "serde")]
impl Serialize for Signature {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.serialize_bytes(&self.to_bytes()[..])
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for Signature {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
        struct SignatureVisitor;

        impl<'d> Visitor<'d> for SignatureVisitor {
            type Value = Signature;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("An ed25519 signature as 64 bytes, as specified in RFC8032.")
            }

            fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Signature, E> where E: SerdeError{
                Signature::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
            }
        }
        deserializer.deserialize_bytes(SignatureVisitor)
    }
}

/// An EdDSA secret key.
#[repr(C)]
#[derive(Default)] // we derive Default in order to use the clear() method in Drop
pub struct SecretKey(pub (crate) [u8; SECRET_KEY_LENGTH]);

impl Debug for SecretKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "SecretKey: {:?}", &self.0[..])
    }
}

/// Overwrite secret key material with null bytes when it goes out of scope.
impl Drop for SecretKey {
    fn drop(&mut self) {
        self.0.clear();
    }
}

impl SecretKey {
    /// Expand this `SecretKey` into an `ExpandedSecretKey`.
    pub fn expand<D>(&self) -> ExpandedSecretKey where D: Digest<OutputSize = U64> + Default {
        ExpandedSecretKey::from_secret_key::<D>(&self)
    }

    /// Convert this secret key to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] {
        self.0
    }

    /// View this secret key as a byte array.
    #[inline]
    pub fn as_bytes<'a>(&'a self) -> &'a [u8; SECRET_KEY_LENGTH] {
        &self.0
    }

    /// Construct a `SecretKey` from a slice of bytes.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate ed25519_dalek;
    /// #
    /// use ed25519_dalek::SecretKey;
    /// use ed25519_dalek::SECRET_KEY_LENGTH;
    /// use ed25519_dalek::SignatureError;
    ///
    /// # fn doctest() -> Result<SecretKey, SignatureError> {
    /// let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = [
    ///    157, 097, 177, 157, 239, 253, 090, 096,
    ///    186, 132, 074, 244, 146, 236, 044, 196,
    ///    068, 073, 197, 105, 123, 050, 105, 025,
    ///    112, 059, 172, 003, 028, 174, 127, 096, ];
    ///
    /// let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?;
    /// #
    /// # Ok(secret_key)
    /// # }
    /// #
    /// # fn main() {
    /// #     let result = doctest();
    /// #     assert!(result.is_ok());
    /// # }
    /// ```
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `SecretKey` or whose error value
    /// is an `SignatureError` wrapping the internal error that occurred.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<SecretKey, SignatureError> {
        if bytes.len() != SECRET_KEY_LENGTH {
            return Err(SignatureError(InternalError::BytesLengthError{
                name: "SecretKey", length: SECRET_KEY_LENGTH }));
        }
        let mut bits: [u8; 32] = [0u8; 32];
        bits.copy_from_slice(&bytes[..32]);

        Ok(SecretKey(bits))
    }

    /// Generate a `SecretKey` from a `csprng`.
    ///
    /// # Example
    ///
    /// ```
    /// extern crate rand;
    /// extern crate sha2;
    /// extern crate ed25519_dalek;
    ///
    /// # #[cfg(feature = "std")]
    /// # fn main() {
    /// #
    /// use rand::Rng;
    /// use rand::OsRng;
    /// use sha2::Sha512;
    /// use ed25519_dalek::PublicKey;
    /// use ed25519_dalek::SecretKey;
    /// use ed25519_dalek::Signature;
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// # }
    /// #
    /// # #[cfg(not(feature = "std"))]
    /// # fn main() { }
    /// ```
    ///
    /// Afterwards, you can generate the corresponding public—provided you also
    /// supply a hash function which implements the `Digest` and `Default`
    /// traits, and which returns 512 bits of output—via:
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # fn main() {
    /// #
    /// # use rand::Rng;
    /// # use rand::ChaChaRng;
    /// # use rand::SeedableRng;
    /// # use sha2::Sha512;
    /// # use ed25519_dalek::PublicKey;
    /// # use ed25519_dalek::SecretKey;
    /// # use ed25519_dalek::Signature;
    /// #
    /// # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
    /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    ///
    /// let public_key: PublicKey = PublicKey::from_secret::<Sha512>(&secret_key);
    /// # }
    /// ```
    ///
    /// The standard hash function used for most ed25519 libraries is SHA-512,
    /// which is available with `use sha2::Sha512` as in the example above.
    /// Other suitable hash functions include Keccak-512 and Blake2b-512.
    ///
    /// # Input
    ///
    /// A CSPRNG with a `fill_bytes()` method, e.g. `rand::ChaChaRng`
    pub fn generate<T>(csprng: &mut T) -> SecretKey
        where T: CryptoRng + Rng,
    {
        let mut sk: SecretKey = SecretKey([0u8; 32]);

        csprng.fill_bytes(&mut sk.0);

        sk
    }
}

#[cfg(feature = "serde")]
impl Serialize for SecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.serialize_bytes(self.as_bytes())
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for SecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
        struct SecretKeyVisitor;

        impl<'d> Visitor<'d> for SecretKeyVisitor {
            type Value = SecretKey;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("An ed25519 secret key as 32 bytes, as specified in RFC8032.")
            }

            fn visit_bytes<E>(self, bytes: &[u8]) -> Result<SecretKey, E> where E: SerdeError {
                SecretKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
            }
        }
        deserializer.deserialize_bytes(SecretKeyVisitor)
    }
}

/// An "expanded" secret key.
///
/// This is produced by using an hash function with 512-bits output to digest a
/// `SecretKey`.  The output digest is then split in half, the lower half being
/// the actual `key` used to sign messages, after twiddling with some bits.¹ The
/// upper half is used a sort of half-baked, ill-designed² pseudo-domain-separation
/// "nonce"-like thing, which is used during signature production by
/// concatenating it with the message to be signed before the message is hashed.
//
// ¹ This results in a slight bias towards non-uniformity at one spectrum of
// the range of valid keys.  Oh well: not my idea; not my problem.
//
// ² It is the author's view (specifically, isis agora lovecruft, in the event
// you'd like to complain about me, again) that this is "ill-designed" because
// this doesn't actually provide true hash domain separation, in that in many
// real-world applications a user wishes to have one key which is used in
// several contexts (such as within tor, which does does domain separation
// manually by pre-concatenating static strings to messages to achieve more
// robust domain separation).  In other real-world applications, such as
// bitcoind, a user might wish to have one master keypair from which others are
// derived (à la BIP32) and different domain separators between keys derived at
// different levels (and similarly for tree-based key derivation constructions,
// such as hash-based signatures).  Leaving the domain separation to
// application designers, who thus far have produced incompatible,
// slightly-differing, ad hoc domain separation (at least those application
// designers who knew enough cryptographic theory to do so!), is therefore a
// bad design choice on the part of the cryptographer designing primitives
// which should be simple and as foolproof as possible to use for
// non-cryptographers.  Further, later in the ed25519 signature scheme, as
// specified in RFC8032, the public key is added into *another* hash digest
// (along with the message, again); it is unclear to this author why there's
// not only one but two poorly-thought-out attempts at domain separation in the
// same signature scheme, and which both fail in exactly the same way.  For a
// better-designed, Schnorr-based signature scheme, see Trevor Perrin's work on
// "generalised EdDSA" and "VXEdDSA".
#[repr(C)]
#[derive(Default)] // we derive Default in order to use the clear() method in Drop
pub struct ExpandedSecretKey {
    pub (crate) key: Scalar,
    pub (crate) nonce: [u8; 32],
}

/// Overwrite secret key material with null bytes when it goes out of scope.
impl Drop for ExpandedSecretKey {
    fn drop(&mut self) {
        self.key.clear();
        self.nonce.clear();
    }
}

#[cfg(feature = "sha2")]
impl<'a> From<&'a SecretKey> for ExpandedSecretKey {
    /// Construct an `ExpandedSecretKey` from a `SecretKey`.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    /// #
    /// use rand::{Rng, OsRng};
    /// use sha2::Sha512;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "std"), not(feature = "sha2")))]
    /// # fn main() {}
    /// ```
    fn from(secret_key: &'a SecretKey) -> ExpandedSecretKey {
        ExpandedSecretKey::from_secret_key::<Sha512>(&secret_key)
    }
}

impl ExpandedSecretKey {
    /// Convert this `ExpandedSecretKey` into an array of 64 bytes.
    ///
    /// # Returns
    ///
    /// An array of 64 bytes.  The first 32 bytes represent the "expanded"
    /// secret key, and the last 32 bytes represent the "domain-separation"
    /// "nonce".
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # #[cfg(all(feature = "sha2", feature = "std"))]
    /// # fn main() {
    /// #
    /// use rand::{Rng, OsRng};
    /// use sha2::Sha512;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// let expanded_secret_key_bytes: [u8; 64] = expanded_secret_key.to_bytes();
    ///
    /// assert!(&expanded_secret_key_bytes[..] != &[0u8; 64][..]);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    #[inline]
    pub fn to_bytes(&self) -> [u8; EXPANDED_SECRET_KEY_LENGTH] {
        let mut bytes: [u8; 64] = [0u8; 64];

        bytes[..32].copy_from_slice(self.key.as_bytes());
        bytes[32..].copy_from_slice(&self.nonce[..]);
        bytes
    }

    /// Construct an `ExpandedSecretKey` from a slice of bytes.
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `ExpandedSecretKey` or whose
    /// error value is an `SignatureError` describing the error that occurred.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # #[cfg(all(feature = "sha2", feature = "std"))]
    /// # fn do_test() -> Result<ExpandedSecretKey, SignatureError> {
    /// #
    /// use rand::{Rng, OsRng};
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    /// use ed25519_dalek::SignatureError;
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
    /// let bytes: [u8; 64] = expanded_secret_key.to_bytes();
    /// let expanded_secret_key_again = ExpandedSecretKey::from_bytes(&bytes)?;
    /// #
    /// # Ok(expanded_secret_key_again)
    /// # }
    /// #
    /// # #[cfg(all(feature = "sha2", feature = "std"))]
    /// # fn main() {
    /// #     let result = do_test();
    /// #     assert!(result.is_ok());
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<ExpandedSecretKey, SignatureError> {
        if bytes.len() != EXPANDED_SECRET_KEY_LENGTH {
            return Err(SignatureError(InternalError::BytesLengthError{
                name: "ExpandedSecretKey", length: EXPANDED_SECRET_KEY_LENGTH }));
        }
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        lower.copy_from_slice(&bytes[00..32]);
        upper.copy_from_slice(&bytes[32..64]);

        Ok(ExpandedSecretKey{ key:   Scalar::from_bits(lower),
                              nonce:                   upper  })
    }

    /// Construct an `ExpandedSecretKey` from a `SecretKey`, using hash function `D`.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate rand;
    /// # extern crate sha2;
    /// # extern crate ed25519_dalek;
    /// #
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    /// #
    /// use rand::{Rng, OsRng};
    /// use sha2::Sha512;
    /// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
    /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from_secret_key::<Sha512>(&secret_key);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    pub fn from_secret_key<D>(secret_key: &SecretKey) -> ExpandedSecretKey
            where D: Digest<OutputSize = U64> + Default {
        let mut h: D = D::default();
        let mut hash:  [u8; 64] = [0u8; 64];
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        h.input(secret_key.as_bytes());
        hash.copy_from_slice(h.fixed_result().as_slice());

        lower.copy_from_slice(&hash[00..32]);
        upper.copy_from_slice(&hash[32..64]);

        lower[0]  &= 248;
        lower[31] &=  63;
        lower[31] |=  64;

        ExpandedSecretKey{ key: Scalar::from_bits(lower), nonce: upper, }
    }

    /// Sign a message with this `ExpandedSecretKey`.
    #[allow(non_snake_case)]
    pub fn sign<D>(&self, message: &[u8], public_key: &PublicKey) -> Signature
            where D: Digest<OutputSize = U64> + Default {
        let mut h: D = D::default();
        let R: CompressedEdwardsY;
        let r: Scalar;
        let s: Scalar;
        let k: Scalar;

        h.input(&self.nonce);
        h.input(&message);

        r = Scalar::from_hash(h);
        R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress();

        h = D::default();
        h.input(R.as_bytes());
        h.input(public_key.as_bytes());
        h.input(&message);

        k = Scalar::from_hash(h);
        s = &(&k * &self.key) + &r;

        Signature{ R, s }
    }

    /// Sign a `prehashed_message` with this `ExpandedSecretKey` using the
    /// Ed25519ph algorithm defined in [RFC8032 §5.1][rfc8032].
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `public_key` is a [`PublicKey`] which corresponds to this secret key.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    ///
    /// # Returns
    ///
    /// An Ed25519ph [`Signature`] on the `prehashed_message`.
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    #[allow(non_snake_case)]
    pub fn sign_prehashed<D>(&self,
                             prehashed_message: D,
                             public_key: &PublicKey,
                             context: Option<&'static [u8]>) -> Signature
        where D: Digest<OutputSize = U64> + Default
    {
        let mut h: D = D::default();
        let mut prehash: [u8; 64] = [0u8; 64];
        let R: CompressedEdwardsY;
        let r: Scalar;
        let s: Scalar;
        let k: Scalar;

        let ctx: &[u8] = context.unwrap_or(b""); // By default, the context is an empty string.

        debug_assert!(ctx.len() <= 255, "The context must not be longer than 255 octets.");

        let ctx_len: u8 = ctx.len() as u8;

        // Get the result of the pre-hashed message.
        prehash.copy_from_slice(prehashed_message.fixed_result().as_slice());

        // This is the dumbest, ten-years-late, non-admission of fucking up the
        // domain separation I have ever seen.  Why am I still required to put
        // the upper half "prefix" of the hashed "secret key" in here?  Why
        // can't the user just supply their own nonce and decide for themselves
        // whether or not they want a deterministic signature scheme?  Why does
        // the message go into what's ostensibly the signature domain separation
        // hash?  Why wasn't there always a way to provide a context string?
        //
        // ...
        //
        // This is a really fucking stupid bandaid, and the damned scheme is
        // still bleeding from malleability, for fuck's sake.
        h.input(b"SigEd25519 no Ed25519 collisions");
        h.input(&[1]); // Ed25519ph
        h.input(&[ctx_len]);
        h.input(ctx);
        h.input(&self.nonce);
        h.input(&prehash);

        r = Scalar::from_hash(h);
        R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress();

        h = D::default();
        h.input(b"SigEd25519 no Ed25519 collisions");
        h.input(&[1]); // Ed25519ph
        h.input(&[ctx_len]);
        h.input(ctx);
        h.input(R.as_bytes());
        h.input(public_key.as_bytes());
        h.input(&prehash);

        k = Scalar::from_hash(h);
        s = &(&k * &self.key) + &r;

        Signature{ R, s }
    }

}

#[cfg(feature = "serde")]
impl Serialize for ExpandedSecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.serialize_bytes(&self.to_bytes()[..])
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for ExpandedSecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
        struct ExpandedSecretKeyVisitor;

        impl<'d> Visitor<'d> for ExpandedSecretKeyVisitor {
            type Value = ExpandedSecretKey;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("An ed25519 expanded secret key as 64 bytes, as specified in RFC8032.")
            }

            fn visit_bytes<E>(self, bytes: &[u8]) -> Result<ExpandedSecretKey, E> where E: SerdeError {
                ExpandedSecretKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
            }
        }
        deserializer.deserialize_bytes(ExpandedSecretKeyVisitor)
    }
}

/// An ed25519 public key.
#[derive(Copy, Clone, Default, Eq, PartialEq)]
#[repr(C)]
pub struct PublicKey(pub (crate) CompressedEdwardsY);

impl Debug for PublicKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "PublicKey( CompressedEdwardsY( {:?} ))", self.0)
    }
}

impl PublicKey {
    /// Convert this public key to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
        self.0.to_bytes()
    }

    /// View this public key as a byte array.
    #[inline]
    pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] {
        &(self.0).0
    }

    /// Construct a `PublicKey` from a slice of bytes.
    ///
    /// # Warning
    ///
    /// The caller is responsible for ensuring that the bytes passed into this
    /// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY`
    /// and that said compressed point is actually a point on the curve.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate ed25519_dalek;
    /// #
    /// use ed25519_dalek::PublicKey;
    /// use ed25519_dalek::PUBLIC_KEY_LENGTH;
    /// use ed25519_dalek::SignatureError;
    ///
    /// # fn doctest() -> Result<PublicKey, SignatureError> {
    /// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
    ///    215,  90, 152,   1, 130, 177,  10, 183, 213,  75, 254, 211, 201, 100,   7,  58,
    ///     14, 225, 114, 243, 218, 166,  35,  37, 175,   2,  26, 104, 247,   7,   81, 26];
    ///
    /// let public_key = PublicKey::from_bytes(&public_key_bytes)?;
    /// #
    /// # Ok(public_key)
    /// # }
    /// #
    /// # fn main() {
    /// #     doctest();
    /// # }
    /// ```
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `PublicKey` or whose error value
    /// is an `SignatureError` describing the error that occurred.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<PublicKey, SignatureError> {
        if bytes.len() != PUBLIC_KEY_LENGTH {
            return Err(SignatureError(InternalError::BytesLengthError{
                name: "PublicKey", length: PUBLIC_KEY_LENGTH }));
        }
        let mut bits: [u8; 32] = [0u8; 32];
        bits.copy_from_slice(&bytes[..32]);

        Ok(PublicKey(CompressedEdwardsY(bits)))
    }

    /// Derive this public key from its corresponding `SecretKey`.
    #[allow(unused_assignments)]
    pub fn from_secret<D>(secret_key: &SecretKey) -> PublicKey
            where D: Digest<OutputSize = U64> + Default {

        let mut h:    D = D::default();
        let mut hash:   [u8; 64] = [0u8; 64];
        let mut digest: [u8; 32] = [0u8; 32];
        let     pk:     [u8; 32];

        h.input(secret_key.as_bytes());
        hash.copy_from_slice(h.fixed_result().as_slice());

        digest.copy_from_slice(&hash[..32]);
        digest[0]  &= 248;
        digest[31] &= 127;
        digest[31] |= 64;

        pk = (&Scalar::from_bits(digest) * &constants::ED25519_BASEPOINT_TABLE).compress().to_bytes();

        PublicKey(CompressedEdwardsY(pk))
    }

    /// Verify a signature on a message with this keypair's public key.
    ///
    /// # Return
    ///
    /// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
    #[allow(non_snake_case)]
    pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> Result<(), SignatureError>
            where D: Digest<OutputSize = U64> + Default
    {
        let mut h: D = D::default();
        let R: EdwardsPoint;
        let k: Scalar;

        let A: EdwardsPoint = match self.0.decompress() {
            Some(x) => x,
            None    => return Err(SignatureError(InternalError::PointDecompressionError)),
        };

        h.input(signature.R.as_bytes());
        h.input(self.as_bytes());
        h.input(&message);

        k = Scalar::from_hash(h);
        R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(-A), &signature.s);

        if R.compress() == signature.R {
            Ok(())
        } else {
            Err(SignatureError(InternalError::VerifyError))
        }
    }

    /// Verify a `signature` on a `prehashed_message` using the Ed25519ph algorithm.
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    /// * `signature` is a purported Ed25519ph [`Signature`] on the `prehashed_message`.
    ///
    /// # Returns
    ///
    /// Returns `true` if the `signature` was a valid signature created by this
    /// `Keypair` on the `prehashed_message`.
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    #[allow(non_snake_case)]
    pub fn verify_prehashed<D>(&self,
                               prehashed_message: D,
                               context: Option<&[u8]>,
                               signature: &Signature) -> Result<(), SignatureError>
        where D: Digest<OutputSize = U64> + Default
    {
        let mut h: D = D::default();
        let R: EdwardsPoint;
        let k: Scalar;

        let ctx: &[u8] = context.unwrap_or(b"");
        debug_assert!(ctx.len() <= 255, "The context must not be longer than 255 octets.");

        let A: EdwardsPoint = match self.0.decompress() {
            Some(x) => x,
            None    => return Err(SignatureError(InternalError::PointDecompressionError)),
        };

        h.input(b"SigEd25519 no Ed25519 collisions");
        h.input(&[1]); // Ed25519ph
        h.input(&[ctx.len() as u8]);
        h.input(ctx);
        h.input(signature.R.as_bytes());
        h.input(self.as_bytes());
        h.input(prehashed_message.fixed_result().as_slice());

        k = Scalar::from_hash(h);
        R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(-A), &signature.s);

        if R.compress() == signature.R {
            Ok(())
        } else {
            Err(SignatureError(InternalError::VerifyError))
        }
    }
}

/// Verify a batch of `signatures` on `messages` with their respective `public_keys`.
///
/// # Inputs
///
/// * `messages` is a slice of byte slices, one per signed message.
/// * `signatures` is a slice of `Signature`s.
/// * `public_keys` is a slice of `PublicKey`s.
/// * `csprng` is an implementation of `Rng + CryptoRng`, such as `rand::ThreadRng`.
///
/// # Panics
///
/// This function will panic if the `messages, `signatures`, and `public_keys`
/// slices are not equal length.
///
/// # Returns
///
/// * A `Result` whose `Ok` value is an emtpy tuple and whose `Err` value is a
///   `SignatureError` containing a description of the internal error which
///   occured.
///
/// # Examples
///
/// ```
/// extern crate ed25519_dalek;
/// extern crate rand;
/// extern crate sha2;
///
/// use ed25519_dalek::verify_batch;
/// use ed25519_dalek::Keypair;
/// use ed25519_dalek::PublicKey;
/// use ed25519_dalek::Signature;
/// use rand::thread_rng;
/// use rand::ThreadRng;
/// use sha2::Sha512;
///
/// # fn main() {
/// let mut csprng: ThreadRng = thread_rng();
/// let keypairs: Vec<Keypair> = (0..64).map(|_| Keypair::generate::<Sha512, _>(&mut csprng)).collect();
/// let msg: &[u8] = b"They're good dogs Brant";
/// let messages: Vec<&[u8]> = (0..64).map(|_| msg).collect();
/// let signatures:  Vec<Signature> = keypairs.iter().map(|key| key.sign::<Sha512>(&msg)).collect();
/// let public_keys: Vec<PublicKey> = keypairs.iter().map(|key| key.public).collect();
///
/// let result = verify_batch::<Sha512>(&messages[..], &signatures[..], &public_keys[..]);
/// assert!(result.is_ok());
/// # }
/// ```
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn verify_batch<D>(messages: &[&[u8]],
                       signatures: &[Signature],
                       public_keys: &[PublicKey]) -> Result<(), SignatureError>
    where D: Digest<OutputSize = U64> + Default
{
    const ASSERT_MESSAGE: &'static [u8] = b"The number of messages, signatures, and public keys must be equal.";
    assert!(signatures.len()  == messages.len(),    ASSERT_MESSAGE);
    assert!(signatures.len()  == public_keys.len(), ASSERT_MESSAGE);
    assert!(public_keys.len() == messages.len(),    ASSERT_MESSAGE);
 
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;
    #[cfg(feature = "std")]
    use std::vec::Vec;

    use core::iter::once;
    use rand::thread_rng;

    use curve25519_dalek::traits::IsIdentity;
    use curve25519_dalek::traits::VartimeMultiscalarMul;

    // Select a random 128-bit scalar for each signature.
    let zs: Vec<Scalar> = signatures
        .iter()
        .map(|_| Scalar::from(thread_rng().gen::<u128>()))
        .collect();

    // Compute the basepoint coefficient, ∑ s[i]z[i] (mod l)
    let B_coefficient: Scalar = signatures
        .iter()
        .map(|sig| sig.s)
        .zip(zs.iter())
        .map(|(s, z)| z * s)
        .sum();

    // Compute H(R || A || M) for each (signature, public_key, message) triplet
    let hrams = (0..signatures.len()).map(|i| {
        let mut h: D = D::default();
        h.input(signatures[i].R.as_bytes());
        h.input(public_keys[i].as_bytes());
        h.input(&messages[i]);
        Scalar::from_hash(h)
    });

    // Multiply each H(R || A || M) by the random value
    let zhrams = hrams.zip(zs.iter()).map(|(hram, z)| hram * z);

    let Rs = signatures.iter().map(|sig| sig.R.decompress());
    let As = public_keys.iter().map(|pk| pk.0.decompress());
    let B = once(Some(constants::ED25519_BASEPOINT_POINT));

    // Compute (-∑ z[i]s[i] (mod l)) B + ∑ z[i]R[i] + ∑ (z[i]H(R||A||M)[i] (mod l)) A[i] = 0
    let id = EdwardsPoint::optional_multiscalar_mul(
        once(-B_coefficient).chain(zs.iter().cloned()).chain(zhrams),
        B.chain(Rs).chain(As),
    ).ok_or_else(|| SignatureError(InternalError::VerifyError))?;

    if id.is_identity() {
        Ok(())
    } else {
        Err(SignatureError(InternalError::VerifyError))
    }
}

#[cfg(feature = "serde")]
impl Serialize for PublicKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.serialize_bytes(self.as_bytes())
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for PublicKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {

        struct PublicKeyVisitor;

        impl<'d> Visitor<'d> for PublicKeyVisitor {
            type Value = PublicKey;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("An ed25519 public key as a 32-byte compressed point, as specified in RFC8032")
            }

            fn visit_bytes<E>(self, bytes: &[u8]) -> Result<PublicKey, E> where E: SerdeError {
                PublicKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
            }
        }
        deserializer.deserialize_bytes(PublicKeyVisitor)
    }
}

/// An ed25519 keypair.
#[derive(Debug, Default)] // we derive Default in order to use the clear() method in Drop
#[repr(C)]
pub struct Keypair {
    /// The secret half of this keypair.
    pub secret: SecretKey,
    /// The public half of this keypair.
    pub public: PublicKey,
}

impl Keypair {
    /// Convert this keypair to bytes.
    ///
    /// # Returns
    ///
    /// An array of bytes, `[u8; KEYPAIR_LENGTH]`.  The first
    /// `SECRET_KEY_LENGTH` of bytes is the `SecretKey`, and the next
    /// `PUBLIC_KEY_LENGTH` bytes is the `PublicKey` (the same as other
    /// libraries, such as [Adam Langley's ed25519 Golang
    /// implementation](https://github.com/agl/ed25519/)).
    pub fn to_bytes(&self) -> [u8; KEYPAIR_LENGTH] {
        let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH];

        bytes[..SECRET_KEY_LENGTH].copy_from_slice(self.secret.as_bytes());
        bytes[SECRET_KEY_LENGTH..].copy_from_slice(self.public.as_bytes());
        bytes
    }

    /// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`.
    ///
    /// # Inputs
    ///
    /// * `bytes`: an `&[u8]` representing the scalar for the secret key, and a
    ///   compressed Edwards-Y coordinate of a point on curve25519, both as bytes.
    ///   (As obtained from `Keypair::to_bytes()`.)
    ///
    /// # Warning
    ///
    /// Absolutely no validation is done on the key.  If you give this function
    /// bytes which do not represent a valid point, or which do not represent
    /// corresponding parts of the key, then your `Keypair` will be broken and
    /// it will be your fault.
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `Keypair` or whose error value
    /// is an `SignatureError` describing the error that occurred.
    pub fn from_bytes<'a>(bytes: &'a [u8]) -> Result<Keypair, SignatureError> {
        if bytes.len() != KEYPAIR_LENGTH {
            return Err(SignatureError(InternalError::BytesLengthError{
                name: "Keypair", length: KEYPAIR_LENGTH}));
        }
        let secret = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH])?;
        let public = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..])?;

        Ok(Keypair{ secret: secret, public: public })
    }

    /// Generate an ed25519 keypair.
    ///
    /// # Example
    ///
    /// ```
    /// extern crate rand;
    /// extern crate sha2;
    /// extern crate ed25519_dalek;
    ///
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    ///
    /// use rand::Rng;
    /// use rand::OsRng;
    /// use sha2::Sha512;
    /// use ed25519_dalek::Keypair;
    /// use ed25519_dalek::Signature;
    ///
    /// let mut csprng: OsRng = OsRng::new().unwrap();
    /// let keypair: Keypair = Keypair::generate::<Sha512, _>(&mut csprng);
    ///
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    /// # Input
    ///
    /// A CSPRNG with a `fill_bytes()` method, e.g. `rand::ChaChaRng`.
    ///
    /// The caller must also supply a hash function which implements the
    /// `Digest` and `Default` traits, and which returns 512 bits of output.
    /// The standard hash function used for most ed25519 libraries is SHA-512,
    /// which is available with `use sha2::Sha512` as in the example above.
    /// Other suitable hash functions include Keccak-512 and Blake2b-512.
    pub fn generate<D, R>(csprng: &mut R) -> Keypair
        where D: Digest<OutputSize = U64> + Default,
              R: CryptoRng + Rng,
    {
        let sk: SecretKey = SecretKey::generate(csprng);
        let pk: PublicKey = PublicKey::from_secret::<D>(&sk);

        Keypair{ public: pk, secret: sk }
    }

    /// Sign a message with this keypair's secret key.
    pub fn sign<D>(&self, message: &[u8]) -> Signature
            where D: Digest<OutputSize = U64> + Default {
        self.secret.expand::<D>().sign::<D>(&message, &self.public)
    }

    /// Sign a `prehashed_message` with this `Keypair` using the
    /// Ed25519ph algorithm defined in [RFC8032 §5.1][rfc8032].
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    ///
    /// # Returns
    ///
    /// An Ed25519ph [`Signature`] on the `prehashed_message`.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate ed25519_dalek;
    /// extern crate rand;
    /// extern crate sha2;
    ///
    /// use ed25519_dalek::Keypair;
    /// use ed25519_dalek::Signature;
    /// use rand::thread_rng;
    /// use rand::ThreadRng;
    /// use sha2::Sha512;
    ///
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    /// let mut csprng: ThreadRng = thread_rng();
    /// let keypair: Keypair = Keypair::generate::<Sha512, _>(&mut csprng);
    /// let message: &[u8] = b"All I want is to pet all of the dogs.";
    ///
    /// // Create a hash digest object which we'll feed the message into:
    /// let prehashed: Sha512 = Sha512::default();
    ///
    /// prehashed.input(message);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    /// If you want, you can optionally pass a "context".  It is generally a
    /// good idea to choose a context and try to make it unique to your project
    /// and this specific usage of signatures.
    ///
    /// For example, without this, if you were to [convert your OpenPGP key
    /// to a Bitcoin key][terrible_idea] (just as an example, and also Don't
    /// Ever Do That) and someone tricked you into signing an "email" which was
    /// actually a Bitcoin transaction moving all your magic internet money to
    /// their address, it'd be a valid transaction.
    ///
    /// By adding a context, this trick becomes impossible, because the context
    /// is concatenated into the hash, which is then signed.  So, going with the
    /// previous example, if your bitcoin wallet used a context of
    /// "BitcoinWalletAppTxnSigning" and OpenPGP used a context (this is likely
    /// the least of their safety problems) of "GPGsCryptoIsntConstantTimeLol",
    /// then the signatures produced by both could never match the other, even
    /// if they signed the exact same message with the same key.
    ///
    /// Let's add a context for good measure (remember, you'll want to choose
    /// your own!):
    ///
    /// ```
    /// # extern crate ed25519_dalek;
    /// # extern crate rand;
    /// # extern crate sha2;
    /// #
    /// # use ed25519_dalek::Keypair;
    /// # use ed25519_dalek::Signature;
    /// # use rand::thread_rng;
    /// # use rand::ThreadRng;
    /// # use sha2::Sha512;
    /// #
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    /// # let mut csprng: ThreadRng = thread_rng();
    /// # let keypair: Keypair = Keypair::generate::<Sha512, _>(&mut csprng);
    /// # let message: &[u8] = b"All I want is to pet all of the dogs.";
    /// # let prehashed: Sha512 = Sha512::default();
    /// # prehashed.input(message);
    /// #
    /// let context: &[u8] = "Ed25519DalekSignPrehashedDoctest";
    ///
    /// let sig: Signature = keypair.sign_prehashed(prehashed, Some(context));
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    /// [terrible_idea]: https://github.com/isislovecruft/scripts/blob/master/gpgkey2bc.py
    pub fn sign_prehashed<D>(&self,
                             prehashed_message: D,
                             context: Option<&'static [u8]>) -> Signature
        where D: Digest<OutputSize = U64> + Default
    {
        self.secret.expand::<D>().sign_prehashed::<D>(prehashed_message, &self.public, context)
    }

    /// Verify a signature on a message with this keypair's public key.
    pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> Result<(), SignatureError>
            where D: Digest<OutputSize = U64> + Default {
        self.public.verify::<D>(message, signature)
    }

    /// Verify a `signature` on a `prehashed_message` using the Ed25519ph algorithm.
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    /// * `signature` is a purported Ed25519ph [`Signature`] on the `prehashed_message`.
    ///
    /// # Returns
    ///
    /// Returns `true` if the `signature` was a valid signature created by this
    /// `Keypair` on the `prehashed_message`.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate ed25519_dalek;
    /// extern crate rand;
    /// extern crate sha2;
    ///
    /// use ed25519_dalek::Keypair;
    /// use ed25519_dalek::Signature;
    /// use rand::thread_rng;
    /// use rand::ThreadRng;
    /// use sha2::Sha512;
    ///
    /// # #[cfg(all(feature = "std", feature = "sha2"))]
    /// # fn main() {
    /// let mut csprng: ThreadRng = thread_rng();
    /// let keypair: Keypair = Keypair::generate::<Sha512, _>(&mut csprng);
    /// let message: &[u8] = b"All I want is to pet all of the dogs.";
    ///
    /// let prehashed: Sha512 = Sha512::default();
    /// prehashed.input(message);
    ///
    /// let context: &[u8] = "Ed25519DalekSignPrehashedDoctest";
    ///
    /// let sig: Signature = keypair.sign_prehashed(prehashed, Some(context));
    ///
    /// // The sha2::Sha512 struct doesn't implement Copy, so we'll have to create a new one:
    /// let prehashed_again: Sha512 = Sha512::default();
    /// prehashed_again.input(message);
    ///
    /// let valid: bool = keypair.public.verify_prehashed(prehashed_again, context, sig);
    ///
    /// assert!(valid);
    /// # }
    /// #
    /// # #[cfg(any(not(feature = "sha2"), not(feature = "std")))]
    /// # fn main() { }
    /// ```
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    pub fn verify_prehashed<D>(&self,
                               prehashed_message: D,
                               context: Option<&[u8]>,
                               signature: &Signature) -> Result<(), SignatureError>
        where D: Digest<OutputSize = U64> + Default
    {
        self.public.verify_prehashed::<D>(prehashed_message, context, signature)
    }
}

#[cfg(feature = "serde")]
impl Serialize for Keypair {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.serialize_bytes(&self.to_bytes()[..])
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for Keypair {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {

        struct KeypairVisitor;

        impl<'d> Visitor<'d> for KeypairVisitor {
            type Value = Keypair;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("An ed25519 keypair, 64 bytes in total where the secret key is \
                                     the first 32 bytes and is in unexpanded form, and the second \
                                     32 bytes is a compressed point for a public key.")
            }

            fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Keypair, E> where E: SerdeError {
                let secret_key = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH]);
                let public_key = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]);

                if secret_key.is_ok() && public_key.is_ok() {
                    Ok(Keypair{ secret: secret_key.unwrap(), public: public_key.unwrap() })
                } else {
                    Err(SerdeError::invalid_length(bytes.len(), &self))
                }
            }
        }
        deserializer.deserialize_bytes(KeypairVisitor)
    }
}

#[cfg(test)]
mod test {
    use std::io::BufReader;
    use std::io::BufRead;
    use std::fs::File;
    use std::string::String;
    use std::vec::Vec;
    use rand::thread_rng;
    use rand::ChaChaRng;
    use rand::SeedableRng;
    use rand::ThreadRng;
    use hex::FromHex;
    use sha2::Sha512;
    use super::*;

    #[cfg(all(test, feature = "serde"))]
    static PUBLIC_KEY: PublicKey = PublicKey(CompressedEdwardsY([
        130, 039, 155, 015, 062, 076, 188, 063,
        124, 122, 026, 251, 233, 253, 225, 220,
        014, 041, 166, 120, 108, 035, 254, 077,
        160, 083, 172, 058, 219, 042, 086, 120, ]));

    #[cfg(all(test, feature = "serde"))]
    static SECRET_KEY: SecretKey = SecretKey([
        062, 070, 027, 163, 092, 182, 011, 003,
        077, 234, 098, 004, 011, 127, 079, 228,
        243, 187, 150, 073, 201, 137, 076, 022,
        085, 251, 152, 002, 241, 042, 072, 054, ]);

    /// Signature with the above keypair of a blank message.
    #[cfg(all(test, feature = "serde"))]
    static SIGNATURE_BYTES: [u8; SIGNATURE_LENGTH] = [
        010, 126, 151, 143, 157, 064, 047, 001,
        196, 140, 179, 058, 226, 152, 018, 102,
        160, 123, 080, 016, 210, 086, 196, 028,
        053, 231, 012, 157, 169, 019, 158, 063,
        045, 154, 238, 007, 053, 185, 227, 229,
        079, 108, 213, 080, 124, 252, 084, 167,
        216, 085, 134, 144, 129, 149, 041, 081,
        063, 120, 126, 100, 092, 059, 050, 011, ];

    #[test]
    fn sign_verify() {  // TestSignVerify
        let mut csprng: ChaChaRng;
        let keypair: Keypair;
        let good_sig: Signature;
        let bad_sig:  Signature;

        let good: &[u8] = "test message".as_bytes();
        let bad:  &[u8] = "wrong message".as_bytes();

        csprng  = ChaChaRng::from_seed([0u8; 32]);
        keypair  = Keypair::generate::<Sha512, _>(&mut csprng);
        good_sig = keypair.sign::<Sha512>(&good);
        bad_sig  = keypair.sign::<Sha512>(&bad);

        assert!(keypair.verify::<Sha512>(&good, &good_sig).is_ok(),
                "Verification of a valid signature failed!");
        assert!(keypair.verify::<Sha512>(&good, &bad_sig).is_err(),
                "Verification of a signature on a different message passed!");
        assert!(keypair.verify::<Sha512>(&bad,  &good_sig).is_err(),
                "Verification of a signature on a different message passed!");
    }

    // TESTVECTORS is taken from sign.input.gz in agl's ed25519 Golang
    // package. It is a selection of test cases from
    // http://ed25519.cr.yp.to/python/sign.input
    #[cfg(test)]
    #[cfg(not(release))]
    #[test]
    fn golden() { // TestGolden
        let mut line: String;
        let mut lineno: usize = 0;

        let f = File::open("TESTVECTORS");
        if f.is_err() {
            println!("This test is only available when the code has been cloned \
                      from the git repository, since the TESTVECTORS file is large \
                      and is therefore not included within the distributed crate.");
            panic!();
        }
        let file = BufReader::new(f.unwrap());

        for l in file.lines() {
            lineno += 1;
            line = l.unwrap();

            let parts: Vec<&str> = line.split(':').collect();
            assert_eq!(parts.len(), 5, "wrong number of fields in line {}", lineno);

            let sec_bytes: Vec<u8> = FromHex::from_hex(&parts[0]).unwrap();
            let pub_bytes: Vec<u8> = FromHex::from_hex(&parts[1]).unwrap();
            let msg_bytes: Vec<u8> = FromHex::from_hex(&parts[2]).unwrap();
            let sig_bytes: Vec<u8> = FromHex::from_hex(&parts[3]).unwrap();

            let secret: SecretKey = SecretKey::from_bytes(&sec_bytes[..SECRET_KEY_LENGTH]).unwrap();
            let public: PublicKey = PublicKey::from_bytes(&pub_bytes[..PUBLIC_KEY_LENGTH]).unwrap();
            let keypair: Keypair  = Keypair{ secret: secret, public: public };

		    // The signatures in the test vectors also include the message
		    // at the end, but we just want R and S.
            let sig1: Signature = Signature::from_bytes(&sig_bytes[..64]).unwrap();
            let sig2: Signature = keypair.sign::<Sha512>(&msg_bytes);

            assert!(sig1 == sig2, "Signature bytes not equal on line {}", lineno);
            assert!(keypair.verify::<Sha512>(&msg_bytes, &sig2).is_ok(),
                    "Signature verification failed on line {}", lineno);
        }
    }

    // From https://tools.ietf.org/html/rfc8032#section-7.3
    #[test]
    fn ed25519ph_rf8032_test_vector() {
        let secret_key: &[u8] = b"833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42";
        let public_key: &[u8] = b"ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf";
        let message: &[u8] = b"616263";
        let signature: &[u8] = b"98a70222f0b8121aa9d30f813d683f809e462b469c7ff87639499bb94e6dae4131f85042463c2a355a2003d062adf5aaa10b8c61e636062aaad11c2a26083406";

        let sec_bytes: Vec<u8> = FromHex::from_hex(secret_key).unwrap();
        let pub_bytes: Vec<u8> = FromHex::from_hex(public_key).unwrap();
        let msg_bytes: Vec<u8> = FromHex::from_hex(message).unwrap();
        let sig_bytes: Vec<u8> = FromHex::from_hex(signature).unwrap();

        let secret: SecretKey = SecretKey::from_bytes(&sec_bytes[..SECRET_KEY_LENGTH]).unwrap();
        let public: PublicKey = PublicKey::from_bytes(&pub_bytes[..PUBLIC_KEY_LENGTH]).unwrap();
        let keypair: Keypair  = Keypair{ secret: secret, public: public };
        let sig1: Signature = Signature::from_bytes(&sig_bytes[..]).unwrap();

        let mut prehash_for_signing: Sha512 = Sha512::default();
        let mut prehash_for_verifying: Sha512 = Sha512::default();

        prehash_for_signing.input(&msg_bytes[..]);
        prehash_for_verifying.input(&msg_bytes[..]);

        let sig2: Signature = keypair.sign_prehashed(prehash_for_signing, None);

        assert!(sig1 == sig2,
                "Original signature from test vectors doesn't equal signature produced:\
                \noriginal:\n{:?}\nproduced:\n{:?}", sig1, sig2);
        assert!(keypair.verify_prehashed(prehash_for_verifying, None, &sig2).is_ok(),
                "Could not verify ed25519ph signature!");
    }

    #[test]
    fn ed25519ph_sign_verify() {
        let mut csprng: ChaChaRng;
        let keypair: Keypair;
        let good_sig: Signature;
        let bad_sig:  Signature;

        let good: &[u8] = b"test message";
        let bad:  &[u8] = b"wrong message";

        // ugh… there's no `impl Copy for Sha512`… i hope we can all agree these are the same hashes
        let mut prehashed_good1: Sha512 = Sha512::default();
        prehashed_good1.input(good);
        let mut prehashed_good2: Sha512 = Sha512::default();
        prehashed_good2.input(good);
        let mut prehashed_good3: Sha512 = Sha512::default();
        prehashed_good3.input(good);

        let mut prehashed_bad1: Sha512 = Sha512::default();
        prehashed_bad1.input(bad);
        let mut prehashed_bad2: Sha512 = Sha512::default();
        prehashed_bad2.input(bad);

        let context: &[u8] = b"testing testing 1 2 3";

        csprng   = ChaChaRng::from_seed([0u8; 32]);
        keypair  = Keypair::generate::<Sha512, _>(&mut csprng);
        good_sig = keypair.sign_prehashed::<Sha512>(prehashed_good1, Some(context));
        bad_sig  = keypair.sign_prehashed::<Sha512>(prehashed_bad1,  Some(context));

        assert!(keypair.verify_prehashed::<Sha512>(prehashed_good2, Some(context), &good_sig).is_ok(),
                "Verification of a valid signature failed!");
        assert!(keypair.verify_prehashed::<Sha512>(prehashed_good3, Some(context), &bad_sig).is_err(),
                "Verification of a signature on a different message passed!");
        assert!(keypair.verify_prehashed::<Sha512>(prehashed_bad2,  Some(context), &good_sig).is_err(),
                "Verification of a signature on a different message passed!");
    }

    #[test]
    fn verify_batch_seven_signatures() {
        let messages: [&[u8]; 7] = [
            b"Watch closely everyone, I'm going to show you how to kill a god.",
            b"I'm not a cryptographer I just encrypt a lot.",
            b"Still not a cryptographer.",
            b"This is a test of the tsunami alert system. This is only a test.",
            b"Fuck dumbin' it down, spit ice, skip jewellery: Molotov cocktails on me like accessories.",
            b"Hey, I never cared about your bucks, so if I run up with a mask on, probably got a gas can too.",
            b"And I'm not here to fill 'er up. Nope, we came to riot, here to incite, we don't want any of your stuff.", ];
        let mut csprng: ThreadRng = thread_rng();
        let mut keypairs: Vec<Keypair> = Vec::new();
        let mut signatures: Vec<Signature> = Vec::new();

        for i in 0..messages.len() {
            let keypair: Keypair = Keypair::generate::<Sha512, _>(&mut csprng);
            signatures.push(keypair.sign::<Sha512>(&messages[i]));
            keypairs.push(keypair);
        }
        let public_keys: Vec<PublicKey> = keypairs.iter().map(|key| key.public).collect();

        let result = verify_batch::<Sha512>(&messages, &signatures[..], &public_keys[..]);

        assert!(result.is_ok());
    }

    #[test]
    fn public_key_from_bytes() {
        // Make another function so that we can test the ? operator.
        fn do_the_test() -> Result<PublicKey, SignatureError> {
            let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
                215, 090, 152, 001, 130, 177, 010, 183,
                213, 075, 254, 211, 201, 100, 007, 058,
                014, 225, 114, 243, 218, 166, 035, 037,
                175, 002, 026, 104, 247, 007, 081, 026, ];
            let public_key = PublicKey::from_bytes(&public_key_bytes)?;

            Ok(public_key)
        }
        assert_eq!(do_the_test(), Ok(PublicKey(CompressedEdwardsY([
            215, 090, 152, 001, 130, 177, 010, 183,
            213, 075, 254, 211, 201, 100, 007, 058,
            014, 225, 114, 243, 218, 166, 035, 037,
            175, 002, 026, 104, 247, 007, 081, 026, ]))))
    }

    #[test]
    fn keypair_clear_on_drop() {
        let mut keypair: Keypair = Keypair::from_bytes(&[15u8; KEYPAIR_LENGTH][..]).unwrap();

        keypair.clear();

        fn as_bytes<T>(x: &T) -> &[u8] {
            use core::mem;
            use core::slice;

            unsafe {
                slice::from_raw_parts(x as *const T as *const u8, mem::size_of_val(x))
            }
        }

        assert!(!as_bytes(&keypair).contains(&0x15));
    }

    #[cfg(all(test, feature = "serde"))]
    use bincode::{serialize, deserialize, Infinite};

    #[cfg(all(test, feature = "serde"))]
    #[test]
    fn serialize_deserialize_signature() {
        let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES).unwrap();
        let encoded_signature: Vec<u8> = serialize(&signature, Infinite).unwrap();
        let decoded_signature: Signature = deserialize(&encoded_signature).unwrap();

        assert_eq!(signature, decoded_signature);
    }

    #[cfg(all(test, feature = "serde"))]
    #[test]
    fn serialize_deserialize_public_key() {
        let encoded_public_key: Vec<u8> = serialize(&PUBLIC_KEY, Infinite).unwrap();
        let decoded_public_key: PublicKey = deserialize(&encoded_public_key).unwrap();

        assert_eq!(PUBLIC_KEY, decoded_public_key);
    }

    #[cfg(all(test, feature = "serde"))]
    #[test]
    fn serialize_deserialize_secret_key() {
        let encoded_secret_key: Vec<u8> = serialize(&SECRET_KEY, Infinite).unwrap();
        let decoded_secret_key: SecretKey = deserialize(&encoded_secret_key).unwrap();

        for i in 0..32 {
            assert_eq!(SECRET_KEY.0[i], decoded_secret_key.0[i]);
        }
    }
}