1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//! ECIES-ed25519: An Integrated Encryption Scheme on Twisted Edwards Curve25519.
//!

//! ECIES can be used to encrypt data using a public key such that it can only be decrypted
//! by the holder of the corresponding private key. It is based on [curve25519-dalek](https://docs.rs/curve25519-dalek).
//!
//! There are two different backends for HKDF-SHA256 / AES-GCM operations:
//!
//!   - The `pure_rust` backend (default). It uses a collection of pure-rust implementations of SHA2, HKDF, AES, and AEAD.
//!
//!   - The `ring` backend uses [ring](https://briansmith.org/rustdoc/ring/). It uses rock solid primitives based on BoringSSL,
//!     but cannot run on all platforms. For example it won't work in web assembly. To enable it add the following to your Cargo.toml:
//!
//!     `ecies-ed25519 = { version = "0.3", features = ["ring"] }`
//!
//! ## Example Usage
//! ```rust
//! let mut csprng = rand::thread_rng();
//! let (secret, public) = ecies_ed25519::generate_keypair(&mut csprng);
//!
//! let message = "I 💖🔒";
//!
//! // Encrypt the message with the public key such that only the holder of the secret key can decrypt.
//! let encrypted = ecies_ed25519::encrypt(&public, message.as_bytes(), &mut csprng).unwrap();
//!
//! // Decrypt the message with the secret key
//! let decrypted = ecies_ed25519::decrypt(&secret, &encrypted);
//!```
//!
//! ## `serde` support
//!
//! The `serde` feature is provided for serializing / deserializing private and public keys.
//!

use curve25519_dalek::scalar::Scalar;
use failure::Fail;
use rand::{CryptoRng, RngCore};

mod keys;
pub use keys::*;

#[cfg(feature = "ring")]
mod ring_backend;

#[cfg(feature = "ring")]
use ring_backend::*;

#[cfg(feature = "pure_rust")]
mod pure_rust_backend;

#[cfg(feature = "pure_rust")]
use pure_rust_backend::*;

#[cfg(not(any(feature = "ring", feature = "pure_rust")))]
compile_error!(
    "ecies-rd25519: Either feature 'ring' or 'pure_rust' must be enabled for this crate."
);

#[cfg(all(feature = "ring", feature = "pure_rust"))]
compile_error!(
    "ecies-rd25519: Feature 'ring' and 'pure_rust' cannot both be enabled. Please choose one."
);

const HKDF_INFO: &[u8; 13] = b"ecies-ed25519";

const AES_IV_LENGTH: usize = 12;

type AesKey = [u8; 32];
type SharedSecret = [u8; 32];

/// Generate a keypair, ready for use in ECIES
pub fn generate_keypair<R: CryptoRng + RngCore>(rng: &mut R) -> (SecretKey, PublicKey) {
    let secret = SecretKey::generate(rng);
    let public = PublicKey::from_secret(&secret);
    (secret, public)
}

/// Encrypt a message using ECIES, it can only be decrypted by the receiver's SecretKey.
pub fn encrypt<R: CryptoRng + RngCore>(
    receiver_pub: &PublicKey,
    msg: &[u8],
    rng: &mut R,
) -> Result<Vec<u8>, Error> {
    let (ephemeral_sk, ephemeral_pk) = generate_keypair(rng);

    let aes_key = encapsulate(&ephemeral_sk, &receiver_pub);
    let encrypted = aes_encrypt(&aes_key, msg, rng)?;

    let mut cipher_text = Vec::with_capacity(PUBLIC_KEY_LENGTH + encrypted.len());
    cipher_text.extend(ephemeral_pk.to_bytes().iter());
    cipher_text.extend(encrypted);

    Ok(cipher_text)
}

/// Decrypt a ECIES encrypted ciphertext using the receiver's SecretKey.
pub fn decrypt(receiver_sec: &SecretKey, ciphertext: &[u8]) -> Result<Vec<u8>, Error> {
    if ciphertext.len() <= PUBLIC_KEY_LENGTH {
        return Err(Error::DecryptionFailedCiphertextShort);
    }

    let ephemeral_pk = PublicKey::from_bytes(&ciphertext[..PUBLIC_KEY_LENGTH])?;
    let encrypted = &ciphertext[PUBLIC_KEY_LENGTH..];
    let aes_key = decapsulate(&receiver_sec, &ephemeral_pk);

    let decrypted = aes_decrypt(&aes_key, encrypted).map_err(|_| Error::DecryptionFailed)?;

    Ok(decrypted)
}

fn generate_shared(secret: &SecretKey, public: &PublicKey) -> SharedSecret {
    let public = public.to_point();
    let secret = Scalar::from_bits(secret.to_bytes());
    let shared_point = public * secret;
    let shared_point_compressed = shared_point.compress();

    let output = shared_point_compressed.as_bytes().to_owned();

    output
}

fn encapsulate(emphemeral_sk: &SecretKey, peer_pk: &PublicKey) -> AesKey {
    let shared_point = generate_shared(emphemeral_sk, peer_pk);

    let emphemeral_pk = PublicKey::from_secret(emphemeral_sk);

    let mut master = [0u8; 32 * 2];
    master[..32].clone_from_slice(emphemeral_pk.0.as_bytes());
    master[32..].clone_from_slice(&shared_point);

    let key = hkdf_sha256(&master);

    key
}

fn decapsulate(sk: &SecretKey, emphemeral_pk: &PublicKey) -> AesKey {
    let shared_point = generate_shared(sk, emphemeral_pk);

    let mut master = [0u8; 32 * 2];
    master[..32].clone_from_slice(emphemeral_pk.0.as_bytes());
    master[32..].clone_from_slice(&shared_point);

    let key = hkdf_sha256(&master);

    key
}

/// Error types
#[derive(Debug, Fail)]
pub enum Error {
    /// Encryption failed
    #[fail(display = "ecies-rd25519: encryption failed")]
    EncryptionFailed,

    /// Encryption failed - RNG error
    #[fail(display = "ecies-rd25519: encryption failed - RNG error")]
    EncryptionFailedRng,

    /// Decryption failed
    #[fail(display = "ecies-rd25519: decryption failed")]
    DecryptionFailed,

    /// Decryption failed - ciphertext too short
    #[fail(display = "ecies-rd25519: decryption failed - ciphertext too short")]
    DecryptionFailedCiphertextShort,

    /// Invalid public key bytes
    #[fail(display = "ecies-rd25519: invalid public key bytes")]
    InvalidPublicKeyBytes,

    /// Invalid secret key bytes
    #[fail(display = "ecies-rd25519: invalid secret key bytes")]
    InvalidSecretKeyBytes,
}

#[cfg(test)]
pub mod tests {
    use super::*;

    use rand::thread_rng;
    use rand::SeedableRng;

    #[test]
    fn test_shared() {
        let (emphemeral_sk, emphemeral_pk) = generate_keypair(&mut thread_rng());
        let (peer_sk, peer_pk) = generate_keypair(&mut thread_rng());

        assert_eq!(
            generate_shared(&emphemeral_sk, &peer_pk),
            generate_shared(&peer_sk, &emphemeral_pk)
        );

        // Make sure it fails when wrong keys used
        assert_ne!(
            generate_shared(&emphemeral_sk, &emphemeral_pk),
            generate_shared(&peer_sk, &peer_pk)
        )
    }

    #[test]
    fn test_encapsulation() {
        let (emphemeral_sk, emphemeral_pk) = generate_keypair(&mut thread_rng());
        let (peer_sk, peer_pk) = generate_keypair(&mut thread_rng());

        assert_eq!(
            encapsulate(&emphemeral_sk, &peer_pk),
            decapsulate(&peer_sk, &emphemeral_pk)
        )
    }

    #[test]
    fn test_aes() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);
        let mut key = [0u8; 32];
        test_rng.fill_bytes(&mut key);

        let plaintext = b"ABC";
        let encrypted = aes_encrypt(&key, plaintext, &mut test_rng).unwrap();
        let decrypted = aes_decrypt(&key, &encrypted).unwrap();

        assert_eq!(plaintext, decrypted.as_slice());

        // Test bad ciphertext
        assert!(aes_decrypt(&key, &[0u8; 16]).is_err());

        // Test bad secret key
        let bad_secret = SecretKey::generate(&mut thread_rng());
        assert!(aes_decrypt(&bad_secret.as_bytes(), &encrypted).is_err());
    }

    #[test]
    fn test_ecies_ed25519() {
        let (peer_sk, peer_pk) = generate_keypair(&mut thread_rng());

        let plaintext = b"ABOLISH ICE";

        let encrypted = encrypt(&peer_pk, plaintext, &mut thread_rng()).unwrap();
        let decrypted = decrypt(&peer_sk, &encrypted).unwrap();

        assert_eq!(plaintext, decrypted.as_slice());

        // Test bad ciphertext
        assert!(decrypt(&peer_sk, &[0u8; 16]).is_err());

        // Test that it fails when using a bad secret key
        let bad_secret = SecretKey::generate(&mut thread_rng());
        assert!(decrypt(&bad_secret, &encrypted).is_err());
    }

    #[test]
    fn test_hkdf_sha256_interop() {
        let known_key: Vec<u8> = vec![
            204, 68, 78, 7, 8, 70, 53, 136, 56, 115, 129, 183, 226, 82, 147, 253, 62, 59, 170, 188,
            131, 119, 31, 21, 249, 255, 19, 103, 230, 24, 213, 204,
        ];
        let key = hkdf_sha256(b"ABC123");

        assert_eq!(key.to_vec(), known_key);
    }

    #[test]
    fn test_aes_interop() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);

        let mut key = [0u8; 32];
        test_rng.fill_bytes(&mut key);

        let plaintext = b"ABC";

        let known_encrypted: Vec<u8> = vec![
            218, 65, 89, 124, 81, 87, 72, 141, 119, 36, 224, 63, 149, 218, 64, 106, 159, 178, 238,
            212, 36, 223, 93, 107, 19, 211, 62, 75, 195, 46, 177,
        ];

        let decrypted = aes_decrypt(&key, &known_encrypted).unwrap();
        assert_eq!(plaintext, decrypted.as_slice());
    }

    #[test]
    fn test_ecies_ed25519_interop() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);

        let (peer_sk, _peer_pk) = generate_keypair(&mut test_rng);

        let plaintext = b"ABC";
        let known_encrypted: Vec<u8> = vec![
            235, 249, 207, 231, 91, 38, 106, 202, 22, 34, 114, 191, 107, 122, 99, 157, 43, 210, 46,
            229, 219, 208, 111, 176, 98, 154, 42, 250, 114, 233, 68, 8, 159, 7, 231, 190, 85, 81,
            56, 122, 152, 186, 151, 124, 246, 147, 163, 153, 29, 85, 248, 238, 194, 15, 180, 98,
            163, 36, 49, 191, 133, 242, 186,
        ];

        let decrypted = decrypt(&peer_sk, &known_encrypted).unwrap();

        assert_eq!(plaintext, decrypted.as_slice());
    }

    #[test]
    fn test_public_key_extract() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);

        let secret = SecretKey::generate(&mut test_rng);
        let public = PublicKey::from_secret(&secret);

        PublicKey::from_bytes(public.as_bytes()).unwrap();

        // Test bad bytes
        assert!(PublicKey::from_bytes(&[0u8; 16]).is_err());
        assert!(SecretKey::from_bytes(&[0u8; 16]).is_err());
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_hex() {
        use hex::{FromHex, ToHex};

        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);
        let (secret, public) = generate_keypair(&mut test_rng);

        // lower
        let serialized_secret: String = secret.encode_hex();
        let serialized_public: String = public.encode_hex();

        let deserialized_secret = SecretKey::from_hex(serialized_secret).unwrap();
        let deserialized_public = PublicKey::from_hex(&serialized_public).unwrap();

        assert_eq!(secret.to_bytes(), deserialized_secret.to_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());

        // UPPER
        let serialized_secret: String = secret.encode_hex_upper();
        let serialized_public: String = public.encode_hex_upper();

        let deserialized_secret = SecretKey::from_hex(serialized_secret).unwrap();
        let deserialized_public = PublicKey::from_hex(serialized_public).unwrap();

        assert_eq!(secret.to_bytes(), deserialized_secret.to_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde_json() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);
        let (secret, public) = generate_keypair(&mut test_rng);

        // String
        let serialized_secret = serde_json::to_string(&secret).unwrap();
        let serialized_public = serde_json::to_string(&public).unwrap();

        let deserialized_secret: SecretKey = serde_json::from_str(&serialized_secret).unwrap();
        let deserialized_public: PublicKey = serde_json::from_str(&serialized_public).unwrap();

        assert_eq!(secret.to_bytes(), deserialized_secret.to_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());

        // Stringy bytes
        let deserialized_secret: SecretKey =
            serde_json::from_slice(serialized_secret.as_bytes()).unwrap();
        let deserialized_public: PublicKey =
            serde_json::from_slice(serialized_public.as_bytes()).unwrap();

        assert_eq!(secret.as_bytes(), deserialized_secret.as_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());

        // Bytes
        let serialized_secret = serde_json::to_vec(&secret).unwrap();
        let serialized_public = serde_json::to_vec(&public).unwrap();

        let deserialized_secret: SecretKey = serde_json::from_slice(&serialized_secret).unwrap();
        let deserialized_public: PublicKey = serde_json::from_slice(&serialized_public).unwrap();

        assert_eq!(secret.as_bytes(), deserialized_secret.as_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());

        // Test errors - mangle some bits and confirm it doesn't work:
        let mut serialized_public = serde_json::to_vec(&public).unwrap();
        serialized_public[0] = 50;
        assert!(serde_json::from_slice::<PublicKey>(&serialized_public).is_err());

        let mut serialized_public = serde_json::to_vec(&public).unwrap();
        serialized_public.push(48);
        serialized_public.push(49);
        assert!(serde_json::from_slice::<PublicKey>(&serialized_public).is_err());
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde_cbor() {
        let mut test_rng = rand::rngs::StdRng::from_seed([0u8; 32]);
        let (secret, public) = generate_keypair(&mut test_rng);

        let serialized_secret = serde_cbor::to_vec(&secret).unwrap();
        let serialized_public = serde_cbor::to_vec(&public).unwrap();

        let deserialized_secret: SecretKey = serde_cbor::from_slice(&serialized_secret).unwrap();
        let deserialized_public: PublicKey = serde_cbor::from_slice(&serialized_public).unwrap();

        assert_eq!(secret.as_bytes(), deserialized_secret.as_bytes());
        assert_eq!(public.as_bytes(), deserialized_public.as_bytes());

        // Test errors - mangle some bits and confirm it doesn't work:
        let mut serialized_public = serde_cbor::to_vec(&public).unwrap();
        serialized_public[6] = 120;
        assert!(serde_cbor::from_slice::<PublicKey>(&serialized_public).is_err());
    }
}