1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Support for ECDSA signatures encoded as ASN.1 DER.

use crate::{Error, Result};
use core::{
    convert::{TryFrom, TryInto},
    fmt,
    ops::{Add, Range},
};
use der::{asn1::UIntBytes, Decodable};
use elliptic_curve::{
    bigint::Encoding as _,
    consts::U9,
    generic_array::{ArrayLength, GenericArray},
    weierstrass::Curve,
    FieldSize,
};

#[cfg(feature = "alloc")]
use alloc::boxed::Box;

/// Maximum overhead of an ASN.1 DER-encoded ECDSA signature for a given curve:
/// 9-bytes.
///
/// Includes 3-byte ASN.1 DER header:
///
/// - 1-byte: ASN.1 `SEQUENCE` tag (0x30)
/// - 2-byte: length
///
/// ...followed by two ASN.1 `INTEGER` values, which each have a header whose
/// maximum length is the following:
///
/// - 1-byte: ASN.1 `INTEGER` tag (0x02)
/// - 1-byte: length
/// - 1-byte: zero to indicate value is positive (`INTEGER` is signed)
pub type MaxOverhead = U9;

/// Maximum size of an ASN.1 DER encoded signature for the given elliptic curve.
pub type MaxSize<C> = <<FieldSize<C> as Add>::Output as Add<MaxOverhead>>::Output;

/// Byte array containing a serialized ASN.1 signature
type SignatureBytes<C> = GenericArray<u8, MaxSize<C>>;

/// ASN.1 DER-encoded signature.
///
/// Generic over the scalar size of the elliptic curve.
pub struct Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    /// ASN.1 DER-encoded signature data
    bytes: SignatureBytes<C>,

    /// Range of the `r` value within the signature
    r_range: Range<usize>,

    /// Range of the `s` value within the signature
    s_range: Range<usize>,
}

impl<C> signature::Signature for Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    /// Parse an ASN.1 DER-encoded ECDSA signature from a byte slice
    fn from_bytes(bytes: &[u8]) -> Result<Self> {
        bytes.try_into()
    }
}

#[allow(clippy::len_without_is_empty)]
impl<C> Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    /// Get the length of the signature in bytes
    pub fn len(&self) -> usize {
        self.s_range.end
    }

    /// Borrow this signature as a byte slice
    pub fn as_bytes(&self) -> &[u8] {
        &self.bytes.as_slice()[..self.len()]
    }

    /// Serialize this signature as a boxed byte slice
    #[cfg(feature = "alloc")]
    pub fn to_bytes(&self) -> Box<[u8]> {
        self.as_bytes().to_vec().into_boxed_slice()
    }

    /// Create an ASN.1 DER encoded signature from big endian `r` and `s` scalars
    pub(crate) fn from_scalar_bytes(r: &[u8], s: &[u8]) -> der::Result<Self> {
        let mut bytes = SignatureBytes::<C>::default();
        let mut encoder = der::Encoder::new(&mut bytes);
        encoder.message(&[&UIntBytes::new(r)?, &UIntBytes::new(s)?])?;

        let sig = encoder.finish()?;
        sig.try_into().map_err(|_| der::Tag::Sequence.value_error())
    }

    /// Get the `r` component of the signature (leading zeros removed)
    pub(crate) fn r(&self) -> &[u8] {
        &self.bytes[self.r_range.clone()]
    }

    /// Get the `s` component of the signature (leading zeros removed)
    pub(crate) fn s(&self) -> &[u8] {
        &self.bytes[self.s_range.clone()]
    }
}

impl<C> AsRef<[u8]> for Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl<C> fmt::Debug for Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("asn1::Signature")
            .field("r", &self.r())
            .field("s", &self.s())
            .finish()
    }
}

impl<C> TryFrom<&[u8]> for Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    type Error = Error;

    fn try_from(input: &[u8]) -> Result<Self> {
        let (r, s) = der::Decoder::new(input)
            .sequence(|decoder| Ok((UIntBytes::decode(decoder)?, UIntBytes::decode(decoder)?)))
            .map_err(|_| Error::new())?;

        if r.as_bytes().len() > C::UInt::BYTE_SIZE || s.as_bytes().len() > C::UInt::BYTE_SIZE {
            return Err(Error::new());
        }

        let r_range = find_scalar_range(input, r.as_bytes())?;
        let s_range = find_scalar_range(input, s.as_bytes())?;

        if s_range.end != input.len() {
            return Err(Error::new());
        }

        let mut bytes = SignatureBytes::<C>::default();
        bytes[..s_range.end].copy_from_slice(input);

        Ok(Signature {
            bytes,
            r_range,
            s_range,
        })
    }
}

impl<C> TryFrom<Signature<C>> for super::Signature<C>
where
    C: Curve,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    type Error = Error;

    fn try_from(sig: Signature<C>) -> Result<super::Signature<C>> {
        let mut bytes = super::SignatureBytes::<C>::default();
        let r_begin = C::UInt::BYTE_SIZE.saturating_sub(sig.r().len());
        let s_begin = bytes.len().saturating_sub(sig.s().len());
        bytes[r_begin..C::UInt::BYTE_SIZE].copy_from_slice(sig.r());
        bytes[s_begin..].copy_from_slice(sig.s());
        Self::try_from(bytes.as_slice())
    }
}

/// Locate the range within a slice at which a particular subslice is located
fn find_scalar_range(outer: &[u8], inner: &[u8]) -> Result<Range<usize>> {
    let outer_start = outer.as_ptr() as usize;
    let inner_start = inner.as_ptr() as usize;
    let start = inner_start
        .checked_sub(outer_start)
        .ok_or_else(Error::new)?;
    let end = start.checked_add(inner.len()).ok_or_else(Error::new)?;
    Ok(Range { start, end })
}

#[cfg(all(feature = "digest", feature = "hazmat"))]
impl<C> signature::PrehashSignature for Signature<C>
where
    C: Curve + crate::hazmat::DigestPrimitive,
    MaxSize<C>: ArrayLength<u8>,
    <FieldSize<C> as Add>::Output: Add<MaxOverhead> + ArrayLength<u8>,
{
    type Digest = C::Digest;
}

#[cfg(all(test, feature = "arithmetic"))]
mod tests {
    use elliptic_curve::dev::MockCurve;
    use signature::Signature as _;

    type Signature = crate::Signature<MockCurve>;

    const EXAMPLE_SIGNATURE: [u8; 64] = [
        0xf3, 0xac, 0x80, 0x61, 0xb5, 0x14, 0x79, 0x5b, 0x88, 0x43, 0xe3, 0xd6, 0x62, 0x95, 0x27,
        0xed, 0x2a, 0xfd, 0x6b, 0x1f, 0x6a, 0x55, 0x5a, 0x7a, 0xca, 0xbb, 0x5e, 0x6f, 0x79, 0xc8,
        0xc2, 0xac, 0x8b, 0xf7, 0x78, 0x19, 0xca, 0x5, 0xa6, 0xb2, 0x78, 0x6c, 0x76, 0x26, 0x2b,
        0xf7, 0x37, 0x1c, 0xef, 0x97, 0xb2, 0x18, 0xe9, 0x6f, 0x17, 0x5a, 0x3c, 0xcd, 0xda, 0x2a,
        0xcc, 0x5, 0x89, 0x3,
    ];

    #[test]
    fn test_fixed_to_asn1_signature_roundtrip() {
        let signature1 = Signature::from_bytes(&EXAMPLE_SIGNATURE).unwrap();

        // Convert to ASN.1 DER and back
        let asn1_signature = signature1.to_der();
        let signature2 = Signature::from_der(asn1_signature.as_ref()).unwrap();

        assert_eq!(signature1, signature2);
    }

    #[test]
    fn test_asn1_too_short_signature() {
        assert!(Signature::from_der(&[]).is_err());
        assert!(Signature::from_der(&[der::Tag::Sequence.into()]).is_err());
        assert!(Signature::from_der(&[der::Tag::Sequence.into(), 0x00]).is_err());
        assert!(Signature::from_der(&[
            der::Tag::Sequence.into(),
            0x03,
            der::Tag::Integer.into(),
            0x01,
            0x01
        ])
        .is_err());
    }

    #[test]
    fn test_asn1_non_der_signature() {
        // A minimal 8-byte ASN.1 signature parses OK.
        assert!(Signature::from_der(&[
            der::Tag::Sequence.into(),
            0x06, // length of below
            der::Tag::Integer.into(),
            0x01, // length of value
            0x01, // value=1
            der::Tag::Integer.into(),
            0x01, // length of value
            0x01, // value=1
        ])
        .is_ok());

        // But length fields that are not minimally encoded should be rejected, as they are not
        // valid DER, cf.
        // https://github.com/google/wycheproof/blob/2196000605e4/testvectors/ecdsa_secp256k1_sha256_test.json#L57-L66
        assert!(Signature::from_der(&[
            der::Tag::Sequence.into(),
            0x81, // extended length: 1 length byte to come
            0x06, // length of below
            der::Tag::Integer.into(),
            0x01, // length of value
            0x01, // value=1
            der::Tag::Integer.into(),
            0x01, // length of value
            0x01, // value=1
        ])
        .is_err());
    }
}