1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*!
Linear regression examples

[Overview](https://en.wikipedia.org/wiki/Linear_regression).

# Linear regression to fit a polynomial line
The code below is a method for [minimising the sum of squares error](https://en.wikipedia.org/wiki/Least_squares)
in choosing weights to learn to predict a polynomial ine. The method creates a design matrix
from the inputs x, expanding each row from \[x\] to [1, x, x^2] to allow the model
to represent the non linear relationship between x and y. To model more complex
x and f(x), more complex basis functions are needed (ie to model a n-degree polynomial
you will probably need n + 1 polynomial basis functions from x^0 to x^N).

This example does not include any methods to prevent overfitting. In practise you
may want to use some kind of [regularisation](https://en.wikipedia.org/wiki/Regularization_(mathematics))
and or holding back some data for verification to stop updating the the model when it starts
performing worse on unseen data.

## Matrix APIs

```
use easy_ml::matrices::Matrix;

// first create some data to fit a curve to
let x: Matrix<f32> = Matrix::column(
    vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
);
// we are going to fit a polynomial curve of x^2, but add the sin of x to each value for
// y to create some deteriministic 'noise'.
let y = x.map(|x| x.powi(2) + x.sin());
println!("{:?}", &y);

// Now we create a quadratic basis where each row is [1, x, x^2]
let mut X = x.clone();
// insert the 1 values as the first column, so that each row becomes [1, x]
X.insert_column(0, 1.0);
// insert another column with x^2 as the last, so that each row becomes [1, x, x^2]
X.insert_column_with(2, x.column_iter(0).map(|x| x * x));
println!("{:?}", &X);

// now we compute the weights that give the lowest error for y - (X * w)
// by w = inv(X^T * X) * (X^T * y)
// Note the use of referencing X, w, and y so we don't move them into
// a computation.
// Because we're doing linear regression and creating the matrix we take the inverse
// of in a particular way we don't check if the inverse exists here, but in general
// for arbitary matrices you cannot assume that an inverse exists.
let w = (X.transpose() * &X).inverse().unwrap() * (X.transpose() * &y);
// now predict y using the learned weights
let predictions = &X * &w;
// compute the error for each y and predicted y
let errors = &y - &predictions;
// multiply each error by itself to get the squared error
// and sum into a unit matrix by taking the inner prouct
// then divide by the number of rows to get mean squared error
let mean_squared_error = (errors.transpose() * &errors).get(0, 0) / x.rows() as f32;

println!("MSE: {}", mean_squared_error);
assert!(mean_squared_error > 0.41);
assert!(mean_squared_error < 0.42);
println!("Predicted y values:\n{:?}", &predictions);
println!("Actual y values:\n{:?}", &y);

// now we have a model we can predict outside the range we trained the weights on
let test_x: Matrix<f32> = Matrix::column(vec![-3.0, -1.0, 0.5, 2.5, 13.0, 14.0]);
let test_y = test_x.map(|x| x.powi(2) + x.sin());
let mut test_X = test_x.clone();
test_X.insert_column(0, 1.0);
test_X.insert_column_with(2, test_x.column_iter(0).map(|x| x * x));

// unsurprisingly the model has generalised quite well but
// did better on the training data
println!("Unseen x values:\n{:?}", test_x);
println!("Unseen y predictions:\n{:?}", &test_X * &w);
println!("Unseen y actual values:\n{:?}", test_y);
let errors = &test_y - (&test_X * &w);
let mean_squared_error = (errors.transpose() * &errors).get(0, 0) / test_x.rows() as f32;
println!("MSE on unseen values: {}", mean_squared_error);
assert!(mean_squared_error < 1.0);
assert!(mean_squared_error > 0.99);
```

## Tensor APIs

```
use easy_ml::tensors::Tensor;
use easy_ml::tensors::views::{TensorView, TensorStack};

// first create some data to fit a curve to
let x: Tensor<f32, 1> = Tensor::from(
    [("row", 13)],
    vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
);
// we are going to fit a polynomial curve of x^2, but add the sin of x to each value for
// y to create some deteriministic 'noise'.
let y = x.map(|x| x.powi(2) + x.sin());
println!("{:?}", &y);

// Now we create a quadratic basis where each row is [1, x, x^2]
let mut X = TensorView::from(
    TensorStack::<_, (_, _, _), 1>::from(
        (
            x.map(|x| 1.0), // the first column will be all 1.0s
            x.clone(), // the second column will be x
            x.map(|x| x * x) // the last column will be x^2
        ),
        // we want our X to have a shape of [("row", 13), ("column", 3)]
        // so we insert the columns after the row dimension
        (1, "column")
    )
);
println!("{:?}", &X);

// now we compute the weights that give the lowest error for y - (X * w)
// by w = inv(X^T * X) * (X^T * y)
// Note the use of referencing X, w, and y so we don't move them into
// a computation.
// Because we're doing linear regression and creating the matrix we take the inverse
// of in a particular way we don't check if the inverse exists here, but in general
// for arbitary matrices you cannot assume that an inverse exists.
let w = (X.transpose(["column", "row"]) * &X).inverse().unwrap() *
    (X.transpose(["column", "row"]) * y.expand([(1, "column")]));
assert_eq!(w.shape(), [("row", 3), ("column", 1)]);
// now predict y using the learned weights
let predictions = &X * &w;
// compute the error for each y and predicted y
let errors = y.expand([(1, "column")]) - &predictions;
// multiply each error by itself to get the squared error
// and sum into a unit matrix by taking the inner prouct
// then divide by the number of rows to get mean squared error
let rows = errors.shape()[0].1;
let mean_squared_error = (errors.transpose(["column", "row"]) * &errors).first() / rows as f32;

println!("MSE: {}", mean_squared_error);
assert!(mean_squared_error > 0.41);
assert!(mean_squared_error < 0.42);
println!("Predicted y values:\n{:?}", &predictions);
println!("Actual y values:\n{:?}", &y);

// now we have a model we can predict outside the range we trained the weights on
let test_x: Tensor<f32, 1> = Tensor::from(
    [("row", 6)],
    vec![-3.0, -1.0, 0.5, 2.5, 13.0, 14.0]
);
let test_y = test_x.map(|x| x.powi(2) + x.sin());
let test_X = TensorView::from(
    TensorStack::<_, (_, _, _), 1>::from(
        (
            test_x.map(|x| 1.0),
            test_x.clone(),
            test_x.map(|x| x * x)
        ),
        (1, "column")
    )
);

// unsurprisingly the model has generalised quite well but
// did better on the training data
println!("Unseen x values:\n{:?}", test_x);
println!("Unseen y predictions:\n{:?}", &test_X * &w);
println!("Unseen y actual values:\n{:?}", test_y);
let errors = test_y.expand([(1, "column")]) - (&test_X * &w);
let rows = errors.shape()[0].1;
let mean_squared_error = (errors.transpose(["column", "row"]) * &errors).first() / rows as f32;
println!("MSE on unseen values: {}", mean_squared_error);
assert!(mean_squared_error < 1.0);
assert!(mean_squared_error > 0.99);
```

*/