1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
extern crate memmap;

use std::collections::HashMap;
use std::collections::hash_map::Entry::*;
use std::ops::Deref;
use std::iter::Extend;
use std::mem;
use std::cmp;
use std::ops::DerefMut;
use std::sync::{Arc, RwLock, RwLockReadGuard};

use memmap::{Mmap, Protection};

/// This macro takes a *const pointer from the source operand, and then casts it to the desired return type.
/// this allows it to be used as an easy shorthand for passing pointers as dynasm immediate arguments.
#[macro_export]
macro_rules! Pointer {
    ($e:expr) => {$e as *const _ as _};
}

/// Preforms the same action as the `Pointer!` macro, but casts to a *mut pointer.
#[macro_export]
macro_rules! MutPointer {
    ($e:expr) => {$e as *mut _ as _};
}

/// A struct representing an offset into the assembling buffer of a `DynasmLabelApi` struct.
/// The wrapped `usize` is the offset from the start of the assembling buffer in bytes.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct AssemblyOffset(pub usize);

/// A dynamic label
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct DynamicLabel(usize);

#[derive(Debug)]
struct PatchLoc(usize, u8);

/// A structure holding a buffer of executable memory
#[derive(Debug)]
pub struct ExecutableBuffer {
    // length of the buffer that has actually been written to
    length: usize,
    // backing buffer
    buffer: Mmap
}

/// A structure wrapping some executable memory. It dereferences into a &[u8] slice.
impl ExecutableBuffer {
    /// Obtain a pointer into the executable memory from an offset into it.
    /// When an offset returned from `DynasmLabelApi::offset` is used, the resulting pointer
    /// will point to the start of the first instruction after the offset call,
    /// which can then be jumped or called to divert control flow into the executable
    /// buffer. Note that if this buffer is accessed through an Executor, these pointers
    /// will only be valid as long as its lock is held. When no locks are held,
    /// The assembler is free to relocate the executable buffer when it requires
    /// more memory than available.
    pub fn ptr(&self, offset: AssemblyOffset) -> *const u8 {
        &self[offset.0] as *const u8
    }

    fn as_mut_slice(&mut self) -> &mut [u8] {
        unsafe {&mut self.buffer.as_mut_slice()[..self.length] }
    }
}

impl Deref for ExecutableBuffer {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        unsafe { &self.buffer.as_slice()[..self.length] }
    }
}

/// A read-only shared reference to the executable buffer inside an Assembler. By
/// locking it the internal `ExecutableBuffer` can be accessed and executed.
#[derive(Debug, Clone)]
pub struct Executor {
    execbuffer: Arc<RwLock<ExecutableBuffer>>
}

/// A read-only lockable reference to the internal `ExecutableBuffer` of an Assembler.
/// To gain access to this buffer, it must be locked.
impl Executor {
    /// Gain read-access to the internal `ExecutableBuffer`. While the returned guard
    /// is alive, it can be used to read and execute from the `ExecutableBuffer`.
    /// Any pointers created to the `Executablebuffer` should no longer be used when
    /// the guard is dropped.
    #[inline]
    pub fn lock(&self) -> RwLockReadGuard<ExecutableBuffer> {
        self.execbuffer.read().unwrap()
    }
}

/// This trait represents the interface that must be implemented to allow
/// the dynasm preprocessor to assemble into a datastructure.
pub trait DynasmApi<'a> : Extend<u8> + Extend<&'a u8> {
    /// Report the current offset into the assembling target
    fn offset(&self) -> AssemblyOffset;
    /// Push a byte into the assembling target
    fn push(&mut self, byte: u8);
    /// Push a signed byte into the assembling target
    #[inline]
    fn push_i8(&mut self, value: i8) {
        self.push(value as u8);
    }
    /// Push a signed word into the assembling target
    #[inline]
    fn push_i16(&mut self, value: i16) {
        self.extend(unsafe {
            mem::transmute::<_, [u8; 2]>(value.to_le())
        }.iter().cloned());
    }
    /// Push a signed doubleword into the assembling target
    #[inline]
    fn push_i32(&mut self, value: i32) {
        self.extend(unsafe {
            mem::transmute::<_, [u8; 4]>(value.to_le())
        }.iter().cloned());
    }
    /// Push a signed quadword into the assembling target
    #[inline]
    fn push_i64(&mut self, value: i64) {
        self.extend(unsafe {
            mem::transmute::<_, [u8; 8]>(value.to_le())
        }.iter().cloned());
    }
    /// This function is called in when a runtime error has to be generated. It panics.
    #[inline]
    fn runtime_error(&self, msg: &'static str) -> ! {
        panic!(msg);
    }
}

/// This trait extends DynasmApi to not only allow assembling, but also labels and various directives
pub trait DynasmLabelApi<'a> : DynasmApi<'a> {
    /// Push nops until the assembling target end is aligned to the given alignment
    fn align(&mut self, alignment: usize);
    /// Record the definition of a local label
    fn local_label(  &mut self, name: &'static str);
    /// Record the definition of a global label
    fn global_label( &mut self, name: &'static str);
    /// Record the definition of a dynamic label
    fn dynamic_label(&mut self, id: DynamicLabel);

    /// Record a relocation spot for a forward reference to a local label
    fn forward_reloc( &mut self, name: &'static str, size: u8);
    /// Record a relocation spot for a backward reference to a local label
    fn backward_reloc(&mut self, name: &'static str, size: u8);
    /// Record a relocation spot for a reference to a global label
    fn global_reloc(  &mut self, name: &'static str, size: u8);
    /// Record a relocation spot for a reference to a dynamic label
    fn dynamic_reloc( &mut self, id: DynamicLabel,   size: u8);
}

/// This struct is an implementation of a dynasm runtime. It supports incremental
/// compilation as well as multithreaded execution with simultaneous compilation.
/// Its implementation ensures that no memory is writeable and executable at the
/// same time.
#[derive(Debug)]
pub struct Assembler {
    // buffer where the end result is copied into
    execbuffer: Arc<RwLock<ExecutableBuffer>>,
    // length of the allocated mmap (so we don't have to go through RwLock to get it)
    map_len: usize,

    // offset of the buffer that's being assembled into to the start of the execbuffer
    asmoffset: usize,
    // instruction buffer while building the assembly
    ops: Vec<u8>,

    // label name -> target loc
    global_labels: HashMap<&'static str, usize>,
    // end of patch location -> name
    global_relocs: Vec<(PatchLoc, &'static str)>,

    // label id -> target loc
    dynamic_labels: Vec<Option<usize>>,
    // location to be resolved, loc, label id
    dynamic_relocs: Vec<(PatchLoc, DynamicLabel)>,

    // labelname -> most recent patch location
    local_labels: HashMap<&'static str, usize>,
    // locations to be patched once this label gets seen. name -> Vec<locs>
    local_relocs: HashMap<&'static str, Vec<PatchLoc>>
}

impl Assembler {
    /// Create a new `Assembler` instance
    pub fn new() -> Assembler {
        const MMAP_INIT_SIZE: usize = 1024 * 256;
        Assembler {
            execbuffer: Arc::new(RwLock::new(ExecutableBuffer {
                length: 0,
                buffer: Mmap::anonymous(MMAP_INIT_SIZE, Protection::ReadExecute).expect("Failed to allocate executable memory")
            })),
            asmoffset: 0,
            map_len: MMAP_INIT_SIZE,
            ops: Vec::new(),
            global_labels: HashMap::new(),
            dynamic_labels: Vec::new(),
            local_labels: HashMap::new(),
            global_relocs: Vec::new(),
            dynamic_relocs: Vec::new(),
            local_relocs: HashMap::new()
        }
    }

    /// Create a new dynamic label that can be referenced and defined.
    pub fn new_dynamic_label(&mut self) -> DynamicLabel {
        let id = self.dynamic_labels.len();
        self.dynamic_labels.push(None);
        DynamicLabel(id)
    }

    /// To allow already committed code to be altered, this method allows modification
    /// of the internal ExecutableBuffer directly. When this method is called, all
    /// data will be committed and access to the internal `ExecutableBuffer` will be locked.
    /// The passed function will then be called with an `AssemblyModifier` as argument.
    /// Using this `AssemblyModifier` changes can be made to the committed code.
    /// After this function returns, any labels in these changes will be resolved
    /// and the `ExecutableBuffer` will be unlocked again.
    pub fn alter<F>(&mut self, f: F) where F: FnOnce(&mut AssemblyModifier) -> () {
        self.commit();
        let asmoffset = self.asmoffset;
        self.asmoffset = 0;

        let lock = self.execbuffer.clone();
        let mut lock = lock.write().unwrap();
        let buf = lock.deref_mut();
        buf.buffer.set_protection(Protection::ReadWrite).expect("Failed to change memory protection mode");

        {
            let mut m = AssemblyModifier {
                assembler: self,
                buffer: buf
            };
            f(&mut m);
            m.encode_relocs();
        }

        buf.buffer.set_protection(Protection::ReadExecute).expect("Failed to change memory protection mode");
        self.asmoffset = asmoffset;
        // no commit is required as we directly modified the buffer.
    }

    /// Similar to `Assembler::alter`, this method allows modification of the yet to be
    /// committed assembing buffer. Note that it is not possible to use labels in this
    /// context, and overriding labels will cause corruption when the assembler tries to
    /// resolve the labels at commit time.
    pub fn alter_uncommitted<F>(&mut self, f: F) where F: FnOnce(&mut UncommittedModifier) -> () {
        f(&mut UncommittedModifier {
            offset: self.asmoffset,
            assembler: self
        });
    }

    #[inline]
    fn patch_loc(&mut self, loc: PatchLoc, target: usize) {
        let buf_loc = loc.0 - self.asmoffset;
        let buf = &mut self.ops[buf_loc - loc.1 as usize .. buf_loc];
        let target = target as isize - loc.0 as isize;

        unsafe { match loc.1 {
            1 => buf.copy_from_slice(&mem::transmute::<_, [u8; 1]>( (target as i8 ).to_le() )),
            2 => buf.copy_from_slice(&mem::transmute::<_, [u8; 2]>( (target as i16).to_le() )),
            4 => buf.copy_from_slice(&mem::transmute::<_, [u8; 4]>( (target as i32).to_le() )),
            8 => buf.copy_from_slice(&mem::transmute::<_, [u8; 8]>( (target as i64).to_le() )),
            _ => panic!("invalid patch size")
        } }
    }

    fn encode_relocs(&mut self) {
        let mut relocs = Vec::new();
        mem::swap(&mut relocs, &mut self.global_relocs);
        for (loc, name) in relocs {
            if let Some(&target) = self.global_labels.get(&name) {
                self.patch_loc(loc, target)
            } else {
                panic!("Unkonwn global label '{}'", name);
            }
        }

        let mut relocs = Vec::new();
        mem::swap(&mut relocs, &mut self.dynamic_relocs);
        for (loc, id) in relocs {
            if let Some(&Some(target)) = self.dynamic_labels.get(id.0) {
                self.patch_loc(loc, target)
            } else {
                panic!("Unkonwn dynamic label '{}'", id.0);
            }
        }

        if let Some(name) = self.local_relocs.keys().next() {
            panic!("Unknown local label '{}'", name);
        }
    }

    /// Commit the assembled code from a temporary buffer to the executable buffer.
    /// This method requires write access to the execution buffer and therefore
    /// has to obtain a lock on the datastructure. When this method is called, all
    /// labels will be resolved, and the result can no longer be changed.
    pub fn commit(&mut self) {
        // This is where the part overridden by the current assembling buffer starts.
        // This is guaranteed to be in the actual backing buffer.
        let buf_start = self.asmoffset;
        // and this is where it ends. This is not guaranteed to be in the actual mmap
        let buf_end = self.offset().0;
        // is there any work to do?
        if buf_start == buf_end {
            return
        }
        // finalize all relocs in the newest part.
        self.encode_relocs();

        let same    =          ..buf_start;
        let changed = buf_start..buf_end;

        // The reason we don't have to copy the part after buf_end here is because we will only
        // enter the resize branch if all data past buf_start has been overwritten if we're in an
        // alter invocation
        if buf_end > self.map_len {
            // create a new buffer of the necessary size max(current_buf_len * 2, wanted_len)
            let map_len = cmp::max(buf_end, self.map_len * 2);
            let mut new_buf = Mmap::anonymous(map_len, Protection::ReadWrite).expect("Failed to change memory protection mode");
            self.map_len = new_buf.len();

            // copy over from the old buffer and the asm buffer (unsafe is completely safe due to use of anonymous mappings)
            unsafe {
                new_buf.as_mut_slice()[same].copy_from_slice(&self.execbuffer.read().unwrap().buffer.as_slice()[same]);
                new_buf.as_mut_slice()[changed].copy_from_slice(&self.ops);
            }
            new_buf.set_protection(Protection::ReadExecute).expect("Failed to change memory protection mode");

            // swap the buffers and the initialized length
            let mut data = ExecutableBuffer {
                length: buf_end,
                buffer: new_buf
            };
            mem::swap(&mut data, &mut self.execbuffer.write().unwrap());
            // and the old buffer is dropped.
        } else {
            // make the buffer writeable and copy things over.
            let mut data = self.execbuffer.write().unwrap();
            data.buffer.set_protection(Protection::ReadWrite).expect("Failed to change memory protection mode");
            unsafe {
                data.buffer.as_mut_slice()[changed].copy_from_slice(&self.ops);
            }
            data.buffer.set_protection(Protection::ReadExecute).expect("Failed to change memory protection mode");
            // update the length of the initialized part of the buffer, if this commit adds length
            if buf_end > data.length {
                data.length = buf_end;
            }
        }
        // empty the assembling buffer and update the assembling offset
        self.ops.clear();
        self.asmoffset = buf_end;
    }

    /// Consumes the assembler to return the internal ExecutableBuffer. This
    /// method will only fail if an `Executor` currently holds a lock on the datastructure,
    /// in which case it will return itself.
    pub fn finalize(mut self) -> Result<ExecutableBuffer, Assembler> {
        self.commit();
        match Arc::try_unwrap(self.execbuffer) {
            Ok(execbuffer) => Ok(execbuffer.into_inner().unwrap()),
            Err(arc) => Err(Assembler {
                execbuffer: arc,
                ..self
            })
        }
    }

    /// Creates a read-only reference to the internal `ExecutableBuffer` that must
    /// be locked to access it. Multiple of such read-only locks can be obtained
    /// at the same time, but as long as they are alive they will block any `self.commit()`
    /// calls.
    pub fn reader(&self) -> Executor {
        Executor {
            execbuffer: self.execbuffer.clone()
        }
    }
}

impl<'a> DynasmApi<'a> for Assembler {
    #[inline]
    fn offset(&self) -> AssemblyOffset {
        AssemblyOffset(self.ops.len() + self.asmoffset)
    }

    #[inline]
    fn push(&mut self, value: u8) {
        self.ops.push(value);
    }
}

impl<'a> DynasmLabelApi<'a> for Assembler {
    #[inline]
    fn align(&mut self, alignment: usize) {
        let offset = self.offset().0 % alignment;
        if offset != 0 {
            for _ in 0..(alignment - offset) {
                self.push(0x90);
            }
        }
    }

    #[inline]
    fn global_label(&mut self, name: &'static str) {
        let offset = self.offset().0;
        if let Some(name) = self.global_labels.insert(name, offset) {
            panic!("Duplicate global label '{}'", name);
        }
    }

    #[inline]
    fn global_reloc(&mut self, name: &'static str, size: u8) {
        let offset = self.offset().0;
        self.global_relocs.push((PatchLoc(offset, size), name));
    }

    #[inline]
    fn dynamic_label(&mut self, id: DynamicLabel) {
        let offset = self.offset().0;
        let entry = &mut self.dynamic_labels[id.0];
        if entry.is_some() {
            panic!("Duplicate label '{}'", id.0);
        }
        *entry = Some(offset);
    }

    #[inline]
    fn dynamic_reloc(&mut self, id: DynamicLabel, size: u8) {
        let offset = self.offset().0;
        self.dynamic_relocs.push((PatchLoc(offset, size), id));
    }

    #[inline]
    fn local_label(&mut self, name: &'static str) {
        let offset = self.offset().0;
        if let Some(relocs) = self.local_relocs.remove(&name) {
            for loc in relocs {
                self.patch_loc(loc, offset);
            }
        }
        self.local_labels.insert(name, offset);
    }

    #[inline]
    fn forward_reloc(&mut self, name: &'static str, size: u8) {
        let offset = self.offset().0;
        match self.local_relocs.entry(name) {
            Occupied(mut o) => {
                o.get_mut().push(PatchLoc(offset, size));
            },
            Vacant(v) => {
                v.insert(vec![PatchLoc(offset, size)]);
            }
        }
    }

    #[inline]
    fn backward_reloc(&mut self, name: &'static str, size: u8) {
        if let Some(&target) = self.local_labels.get(&name) {
            let len = self.offset().0;
            self.patch_loc(PatchLoc(len, size), target)
        } else {
            panic!("Unknown local label '{}'", name);
        }
    }
}

impl Extend<u8> for Assembler {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=u8> {
        self.ops.extend(iter)
    }
}

impl<'a> Extend<&'a u8> for Assembler {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=&'a u8> {
        self.extend(iter.into_iter().cloned())
    }
}


/// This struct is a wrapper around an `Assembler` normally created using the
/// `Assembler.alter` method. Instead of writing to a temporary assembling buffer,
/// this struct assembles directly into an executable buffer. The `goto` method can
/// be used to set the assembling offset in the `ExecutableBuffer` of the assembler
/// (this offset is initialized to 0) after which the data at this location can be
/// overwritten by assembling into this struct.
pub struct AssemblyModifier<'a: 'b, 'b> {
    assembler: &'a mut Assembler,
    buffer: &'b mut ExecutableBuffer
}

impl<'a, 'b> AssemblyModifier<'a, 'b> {
    /// Sets the current modification offset to the given value
    #[inline]
    pub fn goto(&mut self, offset: AssemblyOffset) {
        self.assembler.asmoffset = offset.0;
    }

    /// Checks that the current modification offset is not larger than the specified offset.
    /// If this is violated, it panics.
    #[inline]
    pub fn check(&mut self, offset: AssemblyOffset) {
        if self.assembler.asmoffset > offset.0 {
            panic!("specified offset to check is smaller than the actual offset");
        }
    }

    /// Checks that the current modification offset is exactly the specified offset.
    /// If this is violated, it panics.
    #[inline]
    pub fn check_exact(&mut self, offset: AssemblyOffset) {
        if self.assembler.asmoffset != offset.0 {
            panic!("specified offset to check is smaller than the actual offset");
        }
    }

    #[inline]
    fn patch_loc(&mut self, loc: PatchLoc, target: usize) {
        let buf = &mut self.buffer.as_mut_slice()[loc.0 - loc.1 as usize .. loc.0];
        let target = target as isize - loc.0 as isize;

        unsafe { match loc.1 {
            1 => buf.copy_from_slice(&mem::transmute::<_, [u8; 1]>( (target as i8 ).to_le() )),
            2 => buf.copy_from_slice(&mem::transmute::<_, [u8; 2]>( (target as i16).to_le() )),
            4 => buf.copy_from_slice(&mem::transmute::<_, [u8; 4]>( (target as i32).to_le() )),
            8 => buf.copy_from_slice(&mem::transmute::<_, [u8; 8]>( (target as i64).to_le() )),
            _ => panic!("invalid patch size")
        } }
    }

    fn encode_relocs(&mut self) {
        let mut relocs = Vec::new();
        mem::swap(&mut relocs, &mut self.assembler.global_relocs);
        for (loc, name) in relocs {
            if let Some(&target) = self.assembler.global_labels.get(&name) {
                self.patch_loc(loc, target)
            } else {
                panic!("Unkonwn global label '{}'", name);
            }
        }

        let mut relocs = Vec::new();
        mem::swap(&mut relocs, &mut self.assembler.dynamic_relocs);
        for (loc, id) in relocs {
            if let Some(&Some(target)) = self.assembler.dynamic_labels.get(id.0) {
                self.patch_loc(loc, target)
            } else {
                panic!("Unkonwn dynamic label '{}'", id.0);
            }
        }

        if let Some(name) = self.assembler.local_relocs.keys().next() {
            panic!("Unknown local label '{}'", name);
        }
    }
}

impl<'a, 'b, 'c> DynasmApi<'c> for AssemblyModifier<'a, 'b> {
    #[inline]
    fn offset(&self) -> AssemblyOffset {
        self.assembler.offset()
    }

    #[inline]
    fn push(&mut self, value: u8) {
        self.buffer.as_mut_slice()[self.assembler.asmoffset] = value;
        self.assembler.asmoffset += 1;
    }
}

impl<'a, 'b, 'c> DynasmLabelApi<'c> for AssemblyModifier<'a, 'b> {
    #[inline]
    fn align(&mut self, alignment: usize) {
        self.assembler.align(alignment);
    }

    #[inline]
    fn global_label(&mut self, name: &'static str) {
        self.assembler.global_label(name);
    }

    #[inline]
    fn global_reloc(&mut self, name: &'static str, size: u8) {
        self.assembler.global_reloc(name, size);
    }

    #[inline]
    fn dynamic_label(&mut self, id: DynamicLabel) {
        self.assembler.dynamic_label(id);
    }

    #[inline]
    fn dynamic_reloc(&mut self, id: DynamicLabel, size: u8) {
        self.assembler.dynamic_reloc(id, size);
    }

    #[inline]
    fn local_label(&mut self, name: &'static str) {
        let offset = self.offset().0;
        if let Some(relocs) = self.assembler.local_relocs.remove(&name) {
            for loc in relocs {
                self.patch_loc(loc, offset);
            }
        }
        self.assembler.local_labels.insert(name, offset);
    }

    #[inline]
    fn forward_reloc(&mut self, name: &'static str, size: u8) {
        self.assembler.forward_reloc(name, size);
    }

    #[inline]
    fn backward_reloc(&mut self, name: &'static str, size: u8) {
        if let Some(&target) = self.assembler.local_labels.get(&name) {
            let len = self.offset().0;
            self.patch_loc(PatchLoc(len, size), target)
        } else {
            panic!("Unknown local label '{}'", name);
        }
    }
}

impl<'a, 'b> Extend<u8> for AssemblyModifier<'a, 'b> {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=u8> {
        for i in iter {
            self.push(i)
        }
    }
}

impl<'a, 'b, 'c> Extend<&'c u8> for AssemblyModifier<'a, 'b> {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=&'c u8> {
        self.extend(iter.into_iter().cloned())
    }
}

/// This struct is a wrapper around an `Assembler` normally created using the
/// `Assembler.alter_uncommitted` method. It allows the user to edit parts
/// of the assembling buffer that cannot be determined easily or efficiently
/// in advance. Due to limitations of the label resolution algorithms, this
/// assembler does not allow labels to be used.
pub struct UncommittedModifier<'a> {
    assembler: &'a mut Assembler,
    offset: usize
}

impl<'a> UncommittedModifier<'a> {
    /// Sets the current modification offset to the given value
    #[inline]
    pub fn goto(&mut self, offset: AssemblyOffset) {
        self.offset = offset.0;
    }

    /// Checks that the current modification offset is not larger than the specified offset.
    /// If this is violated, it panics.
    #[inline]
    pub fn check(&mut self, offset: AssemblyOffset) {
        if self.offset > offset.0 {
            panic!("specified offset to check is smaller than the actual offset");
        }
    }

    /// Checks that the current modification offset is exactly the specified offset.
    /// If this is violated, it panics.
    #[inline]
    pub fn check_exact(&mut self, offset: AssemblyOffset) {
        if self.offset != offset.0 {
            panic!("specified offset to check is smaller than the actual offset");
        }
    }
}

impl<'a, 'b> DynasmApi<'b> for UncommittedModifier<'a> {
    #[inline]
    fn offset(&self) -> AssemblyOffset {
        AssemblyOffset(self.offset)
    }

    #[inline]
    fn push(&mut self, value: u8) {
        self.assembler.ops[self.offset - self.assembler.asmoffset] = value;
        self.offset += 1;
    }
}

impl<'a> Extend<u8> for UncommittedModifier<'a> {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=u8> {
        for i in iter {
            self.push(i)
        }
    }
}

impl<'a, 'b> Extend<&'b u8> for UncommittedModifier<'a> {
    #[inline]
    fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item=&'b u8> {
        self.extend(iter.into_iter().cloned())
    }
}