1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//! # Making static containers dynamic
//!
//! Sometimes it's much easier to construct some data structure from 
//! a predetermined set of data than to implement a way to update 
//! this data structure with new elements after construction.
//!
//! E.g. it's trivial to make a perfectly balanced search tree 
//! when the data is already known but not so trivial to keep its 
//! balance after adding/deleting some elements.
//!
//! This crate provides a cheap workaround for the case of a data 
//! structure not having any sensible method of insertion.
//!
//! ## Example
//!
//! Suppose you have a sorted vector:
//!
//! ```
//! # use core::iter::FromIterator;
//! struct SortedVec<T> {
//!     vec: Vec<T>
//! }
//!
//! impl<T: Ord> FromIterator<T> for SortedVec<T> {
//!     fn from_iter<I>(iter: I) -> Self where
//!         I: IntoIterator<Item=T>
//!     {
//!         let mut vec: Vec<_> = iter.into_iter().collect();
//!
//!         vec.sort();
//!
//!         SortedVec { vec }
//!     }
//! }
//! ```
//!
//! This is almost a perfect data structure for many use cases but every 
//! insertion is on the average linear in the length of the array.
//!
//! This crate provides a struct [`Dynamic`]:
//!
//! ```
//! # struct SortedVec<T> { t: T }
//! use dynamization::Dynamic;
//!
//! type DynamicSortedVec<T> = Dynamic<SortedVec<T>>;
//! ```
//!
//! which groups the stored data into independent 
//! [`units`](Dynamic::units) of different sizes.
//! The unit sizes are selected in such a way to make single-element 
//! insertions on the average logarithmic.
//!
//! The only thing needed to make [`Dynamic`] work is
//! to implement the [`Static`] trait:
//!
//! ```
//! # use core::iter::FromIterator;
//! # struct SortedVec<T> { vec: Vec<T> }
//! # impl<T: Ord> FromIterator<T> for SortedVec<T> {
//! #    fn from_iter<I>(iter: I) -> Self where
//! #        I: IntoIterator<Item=T> {
//! #        let mut vec: Vec<_> = iter.into_iter().collect();
//! #        vec.sort();
//! #        SortedVec { vec }}}
//! use dynamization::Static;
//!
//! impl<T: Ord> Static for SortedVec<T> {
//!     fn len(&self) -> usize { 
//!         self.vec.len() 
//!     }
//!
//!     fn merge_with(self, other: Self) -> Self {
//!         // Only for documentation purposes: two sorted arrays can be merged 
//!         // much more efficiently than sorting the concatenation result!
//!         self.vec.into_iter().chain(other.vec).collect()
//!     }
//! }
//! ```
//!
//! Now `DynamicSortedVec` has the [`add_unit`](Dynamic::add_unit) method.
//!
//! An optional trait [`Singleton`] can also be 
//! implemented to make the [`insert`](Dynamic::insert) method 
//! available:
//! ```
//! # struct SortedVec<T> { vec: Vec<T> }
//! use dynamization::Singleton;
//!
//! impl<T> Singleton for SortedVec<T> {
//!     type Item = T;
//!     
//!     fn singleton(item: Self::Item) -> Self {
//!         SortedVec { vec: vec![item] }
//!     }
//! }
//! ```
//!
//! Now you can use `DynamicSortedVec` as a rather efficient universal 
//! data structure:
//!
//! ```
//! # use dynamization::{ Static, Dynamic, Singleton };
//! # use core::iter::FromIterator;
//! # struct SortedVec<T> { vec: Vec<T> }
//! # impl<T: Ord> FromIterator<T> for SortedVec<T> {
//! #    fn from_iter<I>(iter: I) -> Self where
//! #        I: IntoIterator<Item=T> {
//! #        let mut vec: Vec<_> = iter.into_iter().collect();
//! #        vec.sort();
//! #        SortedVec { vec }}}
//! # impl<T: Ord> Static for SortedVec<T> {
//! #    fn len(&self) -> usize { self.vec.len() }
//! #    fn merge_with(self, other: Self) -> Self {
//! #        self.vec.into_iter().chain(other.vec).collect()
//! #    }
//! # }
//! # impl<T> Singleton for SortedVec<T> {
//! #     type Item = T;
//! #     fn singleton(item: Self::Item) -> Self {SortedVec {vec:vec![item]}}
//! # }
//! # type DynamicSortedVec<T> = Dynamic<SortedVec<T>>;
//! let mut foo = DynamicSortedVec::new();
//! for x in vec![(1, "one"), (5, "five"), (4, "four"), (3, "tree"), (6, "six")] {
//!     foo.insert(x);
//! }
//!
//! // Each query now must be implemented in terms of partial containers:
//! foo.units_mut().filter_map(|unit| {
//!     unit.vec
//!         .binary_search_by_key(&3, |pair| pair.0)
//!         .ok()
//!         .map(move |index| &mut unit.vec[index])
//! }).for_each(|three| {
//!     assert_eq!(three, &(3, "tree"));
//!     three.1 = "three";
//! });
//!
//! // A dynamic structure can be "freezed" with .try_collect():
//! assert_eq!(foo.try_collect().unwrap().vec, vec![
//!     (1, "one"),
//!     (3, "three"),
//!     (4, "four"),
//!     (5, "five"),
//!     (6, "six"),
//! ]);
//! ```

////////////////////////
// SOME PRELIMINARIES //
////////////////////////
#![no_std]
extern crate alloc;
use alloc::vec::Vec;

///////////////////
// THE MAIN PART //
///////////////////

/// A trait that a static container must implement to become dynamizable.
pub trait Static where Self: Sized {
    /// Size of the container.
    ///
    /// Best measured with the number of single-element insertions needed 
    /// to make such a container.
    ///
    /// If the size can't be determined (i.e. the container doesn't have any 
    /// way of defining single-element insertion), return `1` and use some
    /// strategy which doesn't rely on knowing correct sizes: e.g. 
    /// [`SimpleBinary`](strategy::SimpleBinary) or 
    /// [`SkewBinary`](strategy::SkewBinary).
    fn len(&self) -> usize;

    /// Merges two containers into one.
    ///
    /// One possible way to implement this is to collect both containers and 
    /// then make a new container from all the elements collected.
    fn merge_with(self, other: Self) -> Self;
}

/// A trait which can be implemented to provide a dynamized structure
/// with a convenient [`insert`](Dynamic::insert) method.
pub trait Singleton where Self: Sized {
    /// A type of the container payload.
    type Item;

    /// A container made from a single item.
    fn singleton(item: Self::Item) -> Self;
}



pub mod strategy;
use strategy::Strategy;

/// A dynamic version of `Container`.
#[derive(Clone, Debug)]
pub struct Dynamic<Container, S = strategy::Binary> {
    units: Vec<Option<Container>>,
    strategy: S,
}


impl<Container: Static, S: Strategy> Dynamic<Container, S> {
    /// A new container with a default initial unit count.
    pub fn new() -> Self {
        let (strategy, unit_count) = S::new_unit_count();

        Dynamic {
            units: Vec::with_capacity(unit_count),
            strategy,
        }
    }

    /// A new container with a specified initial unit count.
    pub fn with_unit_count(unit_count: usize) -> Self {
        let strategy = S::with_unit_count(unit_count);
        
        Dynamic {
            units: Vec::with_capacity(unit_count),
            strategy,
        }
    }

    /// Adds a new unit (partial container).
    pub fn add_unit(&mut self, container: Container) {
        self.strategy.add(&mut self.units, container);
    }

    /// Total size of the container.
    ///
    /// It is calculated as a sum of partial lengths.
    /// Usually can be replaced without much hassle by a variable 
    /// tracking insertions/deletions.
    pub fn len(&self) -> usize {
        self.units().map(|x| x.len()).sum()
    }

    /// Returns `true` if there are no elements.
    ///
    /// Warning: this function queries all the units. It's much better 
    /// to replace this function with a variable tracking insertions/deletions.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Iterator over all the partial containers. Shared-reference version.
    pub fn units(&self) -> Units<Container>/*impl Iterator<Item=&Container>*/ {
        Units {
            units: self.units.iter()//.filter_map(|x| x.as_ref())
        }
    }

    /// Iterator over all the partial containers. Unique-reference version.
    pub fn units_mut(&mut self) -> UnitsMut<Container>/*impl Iterator<Item=&mut Container>*/ 
    {
        UnitsMut {
            units: self.units.iter_mut()//.filter_map(|x| x.as_mut())
        }
    }

    /// Collects all the partial containers into a single one.
    ///
    /// Returns `None` if there are no units.
    pub fn try_collect(self) -> Option<Container> {
        let mut iter = self.units.into_iter().filter_map(|x| x);

        match iter.next() {
            None => None,

            Some(first) => {
                Some( iter.fold(first, |acc, x| acc.merge_with(x)) )
            }
        }
    }

    /// Clears all the partial containers.
    pub fn clear(&mut self) {
        for unit in self.units.iter_mut() {
            *unit = None;
        }
    }
}

impl<Container: Static+Singleton, S: Strategy> Dynamic<Container, S> {
    /// Inserts a single item.
    ///
    /// Requires [`Singleton`] to be implemented for the container type.
    pub fn insert(&mut self, item: Container::Item) {
        self.add_unit(Container::singleton(item));
    }
}


/// Shared-reference iterator over all the partial containers.
pub struct Units<'a, Container> {
    units: core::slice::Iter<'a, Option<Container>>,
}

impl<'a, Container> Iterator for Units<'a, Container> {
    type Item = &'a Container;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.units.next().map(|x| x.as_ref()) {
                Some(None) => {}
                Some(Some(item)) => { return Some(item); }
                None => { return None; }
            }
        }
    }
}


/// Unique-reference iterator over all the partial containers.
pub struct UnitsMut<'a, Container> {
    units: core::slice::IterMut<'a, Option<Container>>,
}

impl<'a, Container> Iterator for UnitsMut<'a, Container> {
    type Item = &'a mut Container;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.units.next().map(|x| x.as_mut()) {
                Some(None) => {}
                Some(Some(item)) => { return Some(item); }
                None => { return None; }
            }
        }
    }
}


/// Owning iterator over all the partial containers.
pub struct DynamicIntoIter<Container> {
    units: alloc::vec::IntoIter<Option<Container>>
}

impl<Container> Iterator for DynamicIntoIter<Container> {
    type Item = Container;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.units.next() {
                Some(None) => {}
                Some(Some(item)) => { return Some(item); }
                None => { return None; }
            }
        }
    }
}


impl<Container, S> IntoIterator for Dynamic<Container, S> {
    type Item = Container;
    type IntoIter = DynamicIntoIter<Container>;

    fn into_iter(self) -> Self::IntoIter {
        DynamicIntoIter {
            units: self.units.into_iter()
        }
    }
}


#[cfg(any(feature = "sorted_vec", doc))]
pub mod sorted_vec;