1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
use once_cell::unsync::Lazy;
use std::alloc::Layout;
use spin::Mutex;
use std::collections::VecDeque;
use std::future::Future;
use std::mem;
use std::pin::Pin;
use std::ptr;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::cell::RefCell;

/// Allocator region size of 256 KiB.
const REGION_SIZE: usize = 256 * 1024;

/// Try 2 regions before creating a new one.
const REGION_TRIES: usize = 2;

thread_local! {
    static POOL: Lazy<RefCell<Pool>> = Lazy::new(|| RefCell::new(Pool::new()));
}

#[inline]
fn align_up(mut v: usize, a: usize) -> usize {
    debug_assert!(a.is_power_of_two());

    let d = a - 1;
    while v & d != 0 {
        v = v.next_power_of_two();
    }

    v
}

struct Pool {
    queue: VecDeque<Arc<Mutex<Region>>>,
}

impl Pool {
    fn new() -> Self {
        let mut queue = VecDeque::new();
        for _ in 0..REGION_TRIES {
            queue.push_front(Arc::new(Mutex::new(Region::new())));
        }
        Self { queue }
    }

    #[inline]
    fn allocate<T, F: Future<Output = T> + Send + 'static>(
        &mut self,
        f: F,
    ) -> (
        &'static mut (dyn Future<Output = T> + Send),
        Arc<Mutex<Region>>,
    ) {
        let mut f = Some(f);

        for _ in 0..REGION_TRIES {
            let region = self.queue.pop_front().unwrap();
            let mut r = region.lock();

            match r.allocate(f.take().unwrap()) {
                Ok(ptr) => {
                    drop(r);
                    self.queue.push_front(region.clone());
                    return (unsafe { mem::transmute(ptr) }, region);
                }
                Err(v) => {
                    drop(r);
                    self.queue.push_back(region);
                    f = Some(v);
                }
            }
        }

        self.queue.push_front(Arc::new(Mutex::new(Region::new())));
        self.allocate(f.unwrap())
    }
}

struct Region {
    start: usize,
    next: usize,
    refs: usize,
}

impl Region {
    fn new() -> Self {
        let start: Box<[u8; REGION_SIZE]> = Box::new([0; REGION_SIZE]);
        let start = Box::into_raw(start) as usize;

        Self {
            start,
            next: start,
            refs: 0,
        }
    }

    #[inline]
    fn deallocate(&mut self) {
        self.refs -= 1;
        if self.refs == 0 {
            self.next = self.start;
        }
    }

    fn allocate<T, F: Future<Output = T> + Send + 'static>(
        &mut self,
        f: F,
    ) -> Result<*mut (dyn Future<Output = T> + Send), F> {
        let layout = Layout::for_value(&f);
        let aligned_next = align_up(self.next, layout.align());
        let potential_end = aligned_next + layout.size();
        if potential_end > self.start + REGION_SIZE {
            return Err(f);
        }
        unsafe {
            self.refs += 1;
            self.next = aligned_next + layout.size();
            ptr::write(aligned_next as *mut F, f);
            let faked_box = Box::from_raw(aligned_next as *mut F);
            let faked_box = faked_box as Box<dyn Future<Output = T> + Send>;
            Ok(Box::into_raw(faked_box))
        }
    }
}

/// Represents an asyncronous computation.
///
/// This is different from `std::future::Future` in that it
/// is a fixed size struct with a boxed future inside.
///
/// Using this is advantageous over `Box<dyn Future<Output = T>>` due to less overhead.
pub struct DynFuture<T: 'static> {
    inner: Pin<&'static mut (dyn Future<Output = T> + Send)>,
    region: Arc<Mutex<Region>>,
}

impl<T> Drop for DynFuture<T> {
    #[inline]
    fn drop(&mut self) {
        self.region.lock().deallocate();
    }
}

impl<T> DynFuture<T> {
    /// Creates a new `DynFuture` from a `std::future::Future`.
    ///
    /// This method may but rarely calls the global allocator.
    /// Almost all allocations occur via a fast path using a bump allocator.
    #[inline]
    pub fn new(f: impl Future<Output = T> + Send + 'static) -> Self {
        let (inner, region) = POOL.with(|pool| pool.borrow_mut().allocate(f));
        unsafe {
            Self {
                inner: Pin::new_unchecked(inner),
                region,
            }
        }
    }
}

impl<T> Future for DynFuture<T> {
    type Output = T;

    #[inline]
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        self.inner.as_mut().poll(cx)
    }
}