1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
//! This crate provides the `duplicate` attribute macro for
//! code duplication with substitution.
//!
//! # Usage
//!
//! Say you have a trait with a method `is_max` that should return `true` if the
//! value of the object is the maximum allowed and `false` otherwise:
//! ```
//! trait IsMax {
//!   fn is_max(&self) -> bool;
//! }
//! ```
//! You would like to implement this trait for the three integer types `u8`,
//! `u16`, and `u32`:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! impl IsMax for u8 {
//!   fn is_max(&self) -> bool {
//!     *self == 255
//!   }
//! }
//! impl IsMax for u16 {
//!   fn is_max(&self) -> bool {
//!     *self == 65_535
//!   }
//! }
//! impl IsMax for u32 {
//!   fn is_max(&self) -> bool {
//!     *self == 4_294_967_295
//!   }
//! }
//! ```
//! This is a lot of repetition. Only the type and the maximum value are
//! actually different between the three implementations. This might not be much
//! in our case, but imagine doing this for all the integer types (10, as of the
//! last count.) We can use the `duplicate` attribute to avoid repeating
//! ourselves:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate;
//! #[duplicate(
//!   int_type  max_value;
//!   [ u8 ]    [ 255 ];
//!   [ u16 ]   [ 65_535 ];
//!   [ u32 ]   [ 4_294_967_295 ];
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! assert!(!42u8.is_max());
//! assert!(!42u16.is_max());
//! assert!(!42u32.is_max());
//! ```
//! The above code will expand to the three implementations before it.
//! The attribute invocation specifies that the following item should be
//! substituted by three duplicates of itself. Additionally, each occurrence of
//! the identifier `int_type` in the first duplicate should be replaced by `u8`,
//! in the second duplicate by `u16`, and in the last by `u32`. Likewise, each
//! occurrence of `max_value` should be replaced by `255`, `65_535`, and
//! `4_294_967_295` in the first, second, and third duplicates respectively.
//!
//! `int_type` and `max_value` are called _substitution identifiers_, while `[
//! u8 ]`, `[ u16 ]`, and `[ u32 ]` are each _substitutions_ for `int_type` and
//! `[255]`, `[65_535]`, and `[4_294_967_295]` are substitutions for
//! `max_value`. Each pair of substitutions for the identifiers is called a
//! _substitution group_. Substitution groups must be seperated by `;` and the
//! number of duplicates made is equal to the number of subsitution groups.
//!
//! Substitution identifiers must be valid Rust identifiers.
//! The code inside substitutions can be arbitrary, as long as the expanded code
//! is valid. Additionally, any "bracket" type is valid; we could have used `()`
//! or `{}` anywhere `[]` is used in these examples.
//!
//! ## Nested Invocation
//!
//! Imagine we have the following trait with the method `is_negative` that
//! should return `true` if the value of the object is negative and `false`
//! otherwise:
//! ```
//! trait IsNegative {
//!   fn is_negative(&self) -> bool;
//! }
//! ```
//! We want to implement this for the six integer types `u8`, `u16`, `u32`,
//! `i8`, `i16`, and `i32`. For the first three types, which are all unsigned,
//! the implementation of this trait should trivially return `false` as they
//! can't be negative. However, for the remaining, signed types their
//! implementations is identical (checking whether they are less than `0`), but,
//! of course, different from the first three:
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! impl IsNegative for u8 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u16 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u32 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for i8 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i16 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i32 {
//!   fn is_negative(&self) -> bool {
//!     *self <  0
//!   }
//! }
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! # assert!(!42i16.is_negative());
//! # assert!(!42i32.is_negative());
//! ```
//! Notice how the code repetition is split over 2 axes: 1) They all implement
//! the same trait 2) the method implementations of the first 3 are identical to
//! each other but different to the next 3, which are also mutually identical.
//! To implement this using only the syntax we have already seen, we could do
//! something like this:
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate;
//! #[duplicate(
//!   int_type implementation;
//!   [u8]     [false];
//!   [u16]    [false];
//!   [u32]    [false];
//!   [i8]     [*self < 0];
//!   [i16]    [*self < 0];
//!   [i32]    [*self < 0]
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//! However ironically, we here had to repeat ourselves in the macro invocation
//! instead of the code: we needed to repeat the implementations `[ false ]` and
//! `[ *self < 0 ]` three times each. We can utilize
//! _nested invocation_ to remove the last bit of repetition:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate;
//! #[duplicate(
//!   int_type implementation;
//!   #[
//!     int_type_nested; [u8]; [u16]; [u32]
//!   ][
//!     [ int_type_nested ] [ false ];
//!   ]
//!   #[
//!     int_type_nested; [i8]; [i16]; [i32]
//!   ][
//!     [ int_type_nested ] [ *self < 0 ];
//!   ]
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! We use `#` to invoke the macro inside itself, producing duplicates
//! of the code inside the following `[]`, `{}`, or `()`.
//! In our example, we have 2 invocations that each produce 3 substitution
//! groups, inserting the correct `implementation` for their signed or unsigned
//! types. The above nested invocation is equivalent to the previous, non-nested
//! invocation, and actually expands to it as an intermediate step before
//! expanding the outer-most invocation.
//!
//! Deeper levels of nested invocation are possible and work as expected.
//! There is no limit on the depth of nesting, however, as might be clear from
//! our example, it can get complicated to read.
//!
//! Lastly, we should note that we can have nested invocations interleaved with
//! normal substution groups. For example, say we want to implement `IsNegative`
//! for `i8`, but don't want the same for `i16` and `i32`. We could do the
//! following:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate;
//! #[duplicate(
//!   int_type implementation;
//!   #[                                     // -+
//!     int_type_nested; [u8]; [u16]; [u32]  //  | Nested invocation producing 3
//!   ][                                     //  | substitution groups
//!     [int_type_nested ] [ false ];        //  |
//!   ]                                      // -+
//!   [ i8 ] [ *self < 0 ]                   // -- Substitution group 4
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! ```
//!
//! Note that nested invocation is only allowed after the initial list of
//! substitution identifiers. You also cannot use it between individual
//! subtitutions in a group, only between whole substitution groups.
//! Lastly, remember that substitution groups must be seperated by `;`, which
//! means the nested invocation must produce these semi-colons explicitly and
//! correctly.
//!
//! ## Verbose Syntax
//!
//! The syntax used in the previous examples is the _short syntax_.
//! `duplicate` also accepts a _verbose syntax_ that is less concise, but more
//! readable in some circumstances. Using the verbose syntax, the very first
//! example above looks like this:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate;
//! #[duplicate(
//!   [
//!     int_type  [ u8 ]
//!     max_value [ 255 ]
//!   ]
//!   [
//!     int_type  [ u16 ]
//!     max_value [ 65_535 ]
//!   ]
//!   [
//!     int_type  [ u32 ]
//!     max_value [ 4_294_967_295 ]
//!   ]
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//!
//! In the verbose syntax, a substitution group is put inside brackets and
//! includes a list of substitution identifiers followed by their substitutions.
//! No `;`s are needed. Here is an annotated version of the same code:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! # use duplicate::duplicate;
//! #[duplicate(
//!   [                               //-+
//!     int_type  [ u8 ]              // | Substitution group 1
//!     max_value [ 255 ]             // |
//! //  ^^^^^^^^^ ^^^^^^^ substitution   |
//! //  |                                |
//! //  substitution identifier          |
//!   ]                               //-+
//!   [                               //-+
//!     int_type  [ u16 ]             // | Substitution group 2
//!     max_value [ 65_535 ]          // |
//!   ]                               //-+
//!   [                               //-+
//!     max_value [ 4_294_967_295 ]   // | Substitution group 3
//!     int_type  [ u32 ]             // |
//!   ]                               //-+
//! )]
//! # impl IsMax for int_type {
//! #  fn is_max(&self) -> bool {
//! #     *self == max_value
//! #    }
//! #  }
//! #
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//! Note that in each substitution group every identifier must have exactly one
//! substitution. All the groups must have the exact same identifiers, though
//! the order in which they arrive in each group is not important. For example,
//! in the annotated example, the third group has the `max_value` identifier
//! before `int_type` without having any effect on the expanded code.
//!
//! The verbose syntax is not very concise but it has some advantages over
//! the shorter syntax in regards to readability. Using many identifiers and
//! long substitutions can quickly become unwieldy
//! in the short syntax. The verbose syntax deals better with both cases as it
//! will grow horizontally instead of vertically.
//!
//! The verbose syntax also offer nested invocation. The syntax is exactly the
//! same, but since there is no initial substitution identifier list, nested
//! calls can be used anywhere (though still not inside substitution groups.)
//! The previous `IsNegative` nested invocation example can be written as
//! follows:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate;
//! #[duplicate(
//!   #[
//!     int_type_nested; [u8]; [u16]; [u32]
//!   ][
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ false ]
//!     ]
//!   ]
//!   #[
//!     int_type_nested; [i8]; [i16]; [i32]
//!   ][
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ *self < 0 ]
//!     ]
//!   ]
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! It's important to notice that the nested invocation doesn't know it
//! isn't the outer-most invocation and therefore doesn't discriminate between
//! identifiers. We had to use a different identifier in the nested invocations
//! (`int_type_nested`) than in the code (`int_type`), because otherwise the
//! nested invocation would substitute the substitution identifier, too, instead
//! of only substituting in the nested invocation's substitute.
//!
//! The nested invocations must produce the syntax of their
//! parent invocation. However, each nested invocation's private syntax is free
//! to use any syntax type. Notice in our above example, the nested
//! invocations use short syntax but produce verbose syntax for the outer-most
//! invocation.
//!
//! # Disclaimer
//!
//! This crate does not try to justify or condone the usage of code duplication
//! instead of proper abstractions.
//! This macro should only be used where it is not possible to reduce code
//! duplication through other means, or where it simply is not worth it.
//!
//! As an example, libraries that have two or more structs/traits with similar
//! APIs might use this macro to test them without having to copy-paste test
//! cases and manually make the needed edits.
use proc_macro::{token_stream::IntoIter, Delimiter, Group, Span, TokenStream, TokenTree};
use proc_macro_error::{
	proc_macro::{Punct, Spacing},
	*,
};
use std::collections::{HashMap, HashSet};

// Tests the crate readme file's Rust examples.
mod crate_readme_test;

/// Duplicates and substitutes given identifiers for different code in each
/// duplicate.
///
/// _Substitution identifiers_ can be inserted into the code. They will be
/// substituted with the different substitution code in each duplicate version
/// of the original code.
///
/// # Short Syntax
/// ```
/// use duplicate::duplicate;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate(
///   int_type  max_value;
///   [ u8 ]    [ 255 ];
///   [ u16 ]   [ 65_535 ];
///   [ u32 ]   [ 4_294_967_295 ];
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// The implementation of `IsMax` is duplicated 3 times:
///
/// 1. For the type `u8` and the its maximum value `255`.
/// 2. For the type `u16` and the its maximum value `65_535 `.
/// 3. For the type `u32` and the its maximum value `4_294_967_295 `.
///
/// This syntax must start with a list of all identifiers followed by `;`.
/// Then a `;` seperated list of substitution groups must be given (at least 1
/// group). Every group is a list of substitutions, one for each substitution
/// identifier given in the first line.
/// The substitutions must be enclosed in `[]`, `{}`, or `()`, but are otherwise
/// free.
///
/// # Verbose Syntax
///
/// ```
/// use duplicate::duplicate;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate(
///   [
///     int_type  [ u8 ]
///     max_value [ 255 ]
///   ]
///   [
///     int_type  [ u16 ]
///     max_value [ 65_535 ]
///   ]
///   [
///     max_value [ 4_294_967_295 ]
///     int_type  [ u32 ]
///   ]
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// Has the same functionality as the previous short-syntax example.
///
/// For each duplicate needed, a _substitution group_ must be given enclosed in
/// `[]`, `{}`, or `()`. A substitution group is a set of identifiers and
/// substitution pairs, like in the short syntax, but there can only be one
/// substitution per identifier. All substitution groups must have the same
/// identifiers, however their order is unimportant, as can be seen from the
/// last substitution group above, where `max_value` comes before `int_type`.
///
/// # Nested Invocation
/// ```
/// use duplicate::duplicate;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate(
///   int_type implementation;
///   #[                                  // -+
///     int_type_nested;[u8];[u16];[u32]  //  | Nested invocation producing 3
///   ][                                  //  | substitution groups
///     [ int_type_nested ] [ false ];    //  |
///   ]                                   // -+
///   [ i8 ] [ *self < 0 ]                // -- Substitution group 4
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
///
/// This implements `IsNegative` 4 times:
///
/// 1. For the type `u8` with the implementation of the method simply returning
/// `false`. 2. For the type `u16` the same way as `u8`.
/// 3. For the type `u32` the same way as `u8` and `u16`.
/// 4. For `i8` with the implementation of the method checking whether it's less
/// than `0`.
///
/// We used `#` to start a _nested invocation_ of the macro. In it, we use the
/// identifier `int_type_nested` to substitute the 3 unsigned integer types into
/// the body of the nested invocation, which is a substitution group for the
/// outer macro invocation. This therefore produces the three substitution
/// groups that makes the outer macro make the duplicates for the unsigned
/// integers.
///
/// This code is identical to the following, which doesn't use nested
/// invocation:
///
/// ```
/// # use duplicate::duplicate;
/// # trait IsNegative {
/// #   fn is_negative(&self) -> bool;
/// # }
/// #[duplicate(
///   int_type implementation;
///   [ u8 ]  [ false ];
///   [ u16 ] [ false ];
///   [ u32 ] [ false ];
///   [ i8 ]  [ *self < 0 ]
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
/// # assert!(!42u8.is_negative());
/// # assert!(!42u16.is_negative());
/// # assert!(!42u32.is_negative());
/// # assert!(!42i8.is_negative());
/// ```
///
/// Nested invocation is also available for the verbose syntax:
///
/// ```
/// use duplicate::duplicate;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate(
///   #[                                  // -+
///     int_type_nested;[u8];[u16];[u32]  //  |
///   ][                                  //  |
///     [                                 //  | Nested invocation producing 3
///       int_type [ int_type_nested ]    //  | substitution groups
///       implementation [ false ]        //  |
///     ]                                 //  |
///   ]                                   // -+
///   [                                   // -+
///     int_type [ i8 ]                   //  | Substitution group 4
///     implementation [ *self < 0 ]      //  |
///   ]                                   // -+
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
#[proc_macro_attribute]
#[proc_macro_error]
pub fn duplicate(attr: TokenStream, item: TokenStream) -> TokenStream
{
	match duplicate_impl(attr, item)
	{
		Ok(result) => result,
		Err(err) => abort!(err.0, err.1),
	}
}

/// Implements the macro.
///
/// `allow_short`: If true, accepts short syntax
fn duplicate_impl(attr: TokenStream, item: TokenStream) -> Result<TokenStream, (Span, String)>
{
	let subs = parse_attr(attr, Span::call_site())?;
	let result = substitute(item, subs);
	Ok(result)
}

/// Parses the attribute part of an invocation of duplicate, returning
/// all the substitutions that should be made to the item.
fn parse_attr(
	attr: TokenStream,
	stream_span: Span,
) -> Result<Vec<HashMap<String, TokenStream>>, (Span, String)>
{
	if identify_syntax(attr.clone(), stream_span)?
	{
		validate_verbose_attr(attr)
	}
	else
	{
		let valid = validate_short_attr(attr)?;
		let mut reorder = Vec::new();
		let substitutions = valid;

		for _ in 0..substitutions[0].1.len()
		{
			reorder.push(HashMap::new());
		}

		for (ident, subs) in substitutions
		{
			for (idx, sub) in subs.into_iter().enumerate()
			{
				reorder[idx].insert(ident.clone(), sub);
			}
		}

		Ok(reorder)
	}
}

/// True is verbose, false is short
fn identify_syntax(attr: TokenStream, stream_span: Span) -> Result<bool, (Span, String)>
{
	if let Some(token) = next_token(&mut attr.into_iter(), "Could not identify syntax type.")?
	{
		match token
		{
			TokenTree::Group(_) => Ok(true),
			TokenTree::Ident(_) => Ok(false),
			TokenTree::Punct(p) if is_nested_invocation(&p) => Ok(true),
			_ =>
			{
				Err((
					token.span(),
					"Expected substitution identifier or group. Received neither.".into(),
				))
			},
		}
	}
	else
	{
		Err((stream_span, "No substitutions found.".into()))
	}
}

/// Validates that the attribute part of a duplicate invocation uses
/// the verbose syntax, and returns all the substitutions that should be made.
fn validate_verbose_attr(
	attr: TokenStream,
) -> Result<Vec<HashMap<String, TokenStream>>, (Span, String)>
{
	if attr.is_empty()
	{
		return Err((Span::call_site(), "No substitutions found.".into()));
	}

	let mut sub_groups = Vec::new();
	let mut iter = attr.into_iter();

	let mut substitution_ids = None;
	loop
	{
		if let Some(tree) = next_token(&mut iter, "Expected substitution group.")?
		{
			match tree
			{
				TokenTree::Punct(p) if is_nested_invocation(&p) =>
				{
					let nested_duplicated = invoke_nested(&mut iter, p.span())?;
					let subs = validate_verbose_attr(nested_duplicated)?;
					sub_groups.extend(subs.into_iter());
				},
				_ =>
				{
					sub_groups.push(extract_verbose_substitutions(tree, &substitution_ids)?);
					if None == substitution_ids
					{
						substitution_ids = Some(sub_groups[0].keys().cloned().collect())
					}
				},
			}
		}
		else
		{
			break;
		}
	}

	Ok(sub_groups)
}

/// Extracts a substitution group in the verbose syntax.
fn extract_verbose_substitutions(
	tree: TokenTree,
	existing: &Option<HashSet<String>>,
) -> Result<HashMap<String, TokenStream>, (Span, String)>
{
	// Must get span now, before it's corrupted.
	let tree_span = tree.span();
	let group = check_group(
		tree,
		"Hint: When using verbose syntax, a substitutions must be enclosed in a \
		 group.\nExample:\n..\n[\n\tidentifier1 [ substitution1 ]\n\tidentifier2 [ substitution2 \
		 ]\n]",
	)?;

	if group.stream().into_iter().count() == 0
	{
		return Err((group.span(), "No substitution groups found.".into()));
	}

	let mut substitutions = HashMap::new();
	let mut stream = group.stream().into_iter();

	loop
	{
		if let Some(ident) = next_token(&mut stream, "Epected substitution identifier.")?
		{
			if let TokenTree::Ident(ident) = ident
			{
				let sub = parse_group(
					&mut stream,
					ident.span(),
					"Hint: A substitution identifier should be followed by a group containing the \
					 code to be inserted instead of any occurrence of the identifier.",
				)?;

				let ident_string = ident.to_string();

				// Check have found the same as existing
				if let Some(idents) = existing
				{
					if !idents.contains(&ident_string)
					{
						return Err((
							ident.span(),
							"Unfamiliar substitution identifier. '{}' is not present in previous \
							 substitution groups."
								.into(),
						));
					}
				}
				substitutions.insert(ident_string, sub.stream());
			}
			else
			{
				return Err((
					ident.span(),
					"Expected substitution identifier, got something else.".into(),
				));
			}
		}
		else
		{
			// Check no substitution idents are missing.
			if let Some(idents) = existing
			{
				let sub_idents = substitutions.keys().cloned().collect();
				let diff: Vec<_> = idents.difference(&sub_idents).collect();

				if diff.len() > 0
				{
					let mut msg: String = "Missing substitutions. Previous substitutions groups \
					                       had the following identifiers not present in this \
					                       group: "
						.into();
					for ident in diff
					{
						msg.push_str("'");
						msg.push_str(&ident.to_string());
						msg.push_str("' ");
					}

					return Err((tree_span, msg));
				}
			}
			break;
		}
	}
	Ok(substitutions)
}

/// Validates that the attribute part of a duplicate invocation uses
/// the short syntax and returns the substitution that should be made.
fn validate_short_attr(attr: TokenStream)
	-> Result<Vec<(String, Vec<TokenStream>)>, (Span, String)>
{
	if attr.is_empty()
	{
		return Err((Span::call_site(), "No substitutions found.".into()));
	}

	let mut iter = attr.into_iter();
	let (idents, span) = validate_short_get_identifiers(&mut iter, Span::call_site())?;
	let mut result = idents
		.into_iter()
		.map(|ident| (ident, Vec::new()))
		.collect();
	validate_short_get_all_substitution_goups(iter, span, &mut result)?;

	Ok(result)
}

/// Assuming use of the short syntax, gets the initial list of substitution
/// identifiers.
fn validate_short_get_identifiers(
	iter: &mut IntoIter,
	mut span: Span,
) -> Result<(Vec<String>, Span), (Span, String)>
{
	let mut result = Vec::new();
	loop
	{
		if let Some(next_token) = next_token(iter, "Expected substitution identifier or ';'.")?
		{
			span = next_token.span();
			match next_token
			{
				TokenTree::Ident(ident) => result.push(ident.to_string()),
				TokenTree::Punct(p) if is_semicolon(&p) => break,
				_ => return Err((span, "Expected substitution identifier or ';'.".into())),
			}
		}
		else
		{
			return Err((span, "Expected substitution identifier or ';'.".into()));
		}
	}
	Ok((result, span))
}

/// Gets all substitution groups in the short syntax and inserts
/// them into the given vec.
fn validate_short_get_all_substitution_goups(
	iter: impl Iterator<Item = TokenTree>,
	mut span: Span,
	result: &mut Vec<(String, Vec<TokenStream>)>,
) -> Result<(), (Span, String)>
{
	let mut iter = iter.peekable();
	loop
	{
		if let Some(TokenTree::Punct(p)) = iter.peek()
		{
			if is_nested_invocation(&p)
			{
				let p_span = p.span();
				// consume '#'
				iter.next();

				let nested_duplicated = invoke_nested(&mut iter, p_span)?;
				validate_short_get_all_substitution_goups(
					&mut nested_duplicated.into_iter(),
					span.clone(),
					result,
				)?;
			}
		}
		else
		{
			validate_short_get_substitutions(
				&mut iter,
				span,
				result.iter_mut().map(|(_, vec)| {
					vec.push(TokenStream::new());
					vec.last_mut().unwrap()
				}),
			)?;

			if let Some(token) = iter.next()
			{
				span = token.span();
				if let TokenTree::Punct(p) = token
				{
					if is_semicolon(&p)
					{
						continue;
					}
				}
				return Err((span, "Expected ';'.".into()));
			}
			else
			{
				break;
			}
		}
	}
	Ok(())
}

/// Extracts a substitution group in the short syntax and inserts it into
/// the elements returned by the given groups iterator.
fn validate_short_get_substitutions<'a>(
	iter: &mut impl Iterator<Item = TokenTree>,
	mut span: Span,
	mut groups: impl Iterator<Item = &'a mut TokenStream>,
) -> Result<Span, (Span, String)>
{
	if let Some(token) = iter.next()
	{
		let group = check_group(token, "")?;
		span = group.span();
		*groups.next().unwrap() = group.stream();

		for stream in groups
		{
			let group = parse_group(iter, span, "")?;
			span = group.span();
			*stream = group.stream();
		}
	}
	Ok(span)
}

/// Duplicates the given token stream, substituting any identifiers found.
fn substitute(item: TokenStream, groups: Vec<HashMap<String, TokenStream>>) -> TokenStream
{
	let mut result = TokenStream::new();

	for substitutions in groups
	{
		for token in item.clone().into_iter()
		{
			result.extend(substitute_token_tree(token, &substitutions))
		}
	}

	result
}

/// Recursively checks the given token for any use of the given substitution
/// identifiers and substitutes them, returning the resulting token stream.
fn substitute_token_tree(
	tree: TokenTree,
	subtitutions: &HashMap<String, TokenStream>,
) -> TokenStream
{
	let mut result = TokenStream::new();
	match tree
	{
		TokenTree::Ident(ident) =>
		{
			if let Some(stream) = subtitutions.get(&ident.to_string())
			{
				result.extend(stream.clone().into_iter());
			}
			else
			{
				result.extend(TokenStream::from(TokenTree::Ident(ident)).into_iter());
			}
		},
		TokenTree::Group(group) =>
		{
			let mut substituted = TokenStream::new();
			for token in group.stream().into_iter()
			{
				substituted.extend(substitute_token_tree(token, subtitutions))
			}
			result.extend(
				TokenStream::from(TokenTree::Group(Group::new(group.delimiter(), substituted)))
					.into_iter(),
			);
		},
		_ => result.extend(TokenStream::from(tree).into_iter()),
	}
	result
}

/// Invokes a nested invocation of duplicate, assuming the
/// next group is the attribute part of the invocation and the
/// group after that is the element.
fn invoke_nested(
	iter: &mut impl Iterator<Item = TokenTree>,
	span: Span,
) -> Result<TokenStream, (Span, String)>
{
	let hints = "Hint: '#' is a nested invocation of the macro and must therefore be followed by \
	             a group containing the invocation.\nExample:\n#[\n\tidentifier [ substitute1 ] [ \
	             substitute2 ]\n][\n\tCode to be substituted whenever 'identifier' occurs \n]";
	let nested_attr = parse_group(iter, span, hints)?;
	let nested_subs = parse_attr(nested_attr.stream(), nested_attr.span())?;

	let nested_item = parse_group(iter, nested_attr.span(), hints)?;
	Ok(substitute(nested_item.stream(), nested_subs))
}

/// Tries to parse a valid group from the given token stream iterator, returning
/// the group if successfull.
///
/// If the next token is not a valid group, issues an error, that indicates to
/// the given span and adding the given string to the end of the message.
fn parse_group(
	iter: &mut impl Iterator<Item = TokenTree>,
	parent_span: Span,
	hints: &str,
) -> Result<Group, (Span, String)>
{
	if let Some(tree) = iter.next()
	{
		check_group(tree, hints)
	}
	else
	{
		return Err((
			parent_span,
			"Unexpected end of macro invocation. Expected '[', '{', or '('.\n".to_string() + hints,
		));
	}
}

/// Ensures the given token is a valid group and if so, returns it.
///
/// If not, issues an error, adding the given hints to the error message.
fn check_group(tree: TokenTree, hints: &str) -> Result<Group, (Span, String)>
{
	if let TokenTree::Group(group) = tree
	{
		check_delimiter(group)
	}
	else
	{
		return Err((
			tree.span(),
			"Unexpected token. Expected '[', '{', or '('.\n".to_string() + hints,
		));
	}
}

/// Checks that the given group's delimiter is a bracket ('[]','{}', or '()').
///
/// If so, returns the same group, otherwise issues an error.
fn check_delimiter(group: Group) -> Result<Group, (Span, String)>
{
	if group.delimiter() == Delimiter::None
	{
		return Err((
			group.span(),
			"Unexpected delimiter for group. Expected '[]','{}', or '()' but received non.".into(),
		));
	}
	Ok(group)
}

/// Checks whether the given punctuation is exactly equal to the given
/// character.
fn punct_is_char(p: &Punct, c: char) -> bool
{
	p.as_char() == c && p.spacing() == Spacing::Alone
}

/// Check whether teh given punctuation is ';'.
fn is_semicolon(p: &Punct) -> bool
{
	punct_is_char(p, ';')
}

/// Checks whether the given punctuation is '#'.
fn is_nested_invocation(p: &Punct) -> bool
{
	punct_is_char(p, '#')
}

/// Gets the next token tree from the iterator.
///
/// If the token is a group without delimiters, the token inside the groups is
/// returned. If the group has more than one token, an error is returned.
fn next_token(iter: &mut IntoIter, err_msg: &str) -> Result<Option<TokenTree>, (Span, String)>
{
	match iter.next()
	{
		Some(TokenTree::Group(group)) if group.delimiter() == Delimiter::None =>
		{
			let mut in_group = group.stream().into_iter();
			let result = in_group.next();
			match in_group.next()
			{
				None => Ok(result),
				// If ends with ';' and nothing else, was a statement including
				// only 1 token, so allow.
				Some(TokenTree::Punct(p)) if is_semicolon(&p) && in_group.next().is_none() =>
				{
					Ok(result)
				},
				_ => Err((group.span(), err_msg.into())),
			}
		},
		token => Ok(token),
	}
}