1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#![allow(dead_code)]

use imgref::*;
use rgb::*;

/// RGBA, but: premultiplied alpha, linear (using sRGB primaries, but not its gamma curve), f32 unit scale 0..1
pub type RGBAPLU = RGBA<f32>;
/// RGB, but: linear (using sRGB primaries, but not its gamma curve), f32 unit scale 0..1
pub type RGBLU = RGB<f32>;

/// L\*a\*b\*b, but using float units (values are 100× smaller than in usual integer representation)
#[derive(Debug, Copy, Clone)]
pub struct LAB {
    pub l: f32,
    pub a: f32,
    pub b: f32,
}

impl std::ops::Mul<LAB> for LAB {
    type Output = LAB;
    fn mul(self, other: LAB) -> Self::Output {
        LAB {
            l: self.l * other.l,
            a: self.a * other.a,
            b: self.b * other.b,
        }
    }
}

impl std::ops::Mul<LAB> for f32 {
    type Output = LAB;
    fn mul(self, other: LAB) -> Self::Output {
        LAB {
            l: self * other.l,
            a: self * other.a,
            b: self * other.b,
        }
    }
}

impl std::ops::Mul<f32> for LAB {
    type Output = LAB;
    fn mul(self, other: f32) -> Self::Output {
        LAB {
            l: self.l * other,
            a: self.a * other,
            b: self.b * other,
        }
    }
}

impl std::ops::Add<LAB> for LAB {
    type Output = LAB;
    fn add(self, other: Self::Output) -> Self::Output {
        LAB {
            l: self.l + other.l,
            a: self.a + other.a,
            b: self.b + other.b,
        }
    }
}

impl std::ops::Add<f32> for LAB {
    type Output = LAB;
    fn add(self, other: f32) -> Self::Output {
        LAB {
            l: self.l + other,
            a: self.a + other,
            b: self.b + other,
        }
    }
}

impl std::ops::Sub<LAB> for LAB {
    type Output = LAB;
    fn sub(self, other: LAB) -> Self::Output {
        LAB {
            l: self.l - other.l,
            a: self.a - other.a,
            b: self.b - other.b,
        }
    }
}

impl LAB {
    pub(crate) fn avg(&self) -> f32 {
        (self.l + self.a + self.b) * (1./3.)
    }
}

impl From<LAB> for f64 {
    fn from(other: LAB) -> f64 {
        (f64::from(other.l) + f64::from(other.a) + f64::from(other.b)) * (1./3.)
    }
}

impl From<LAB> for f32 {
    fn from(other: LAB) -> f32 {
        other.avg()
    }
}

impl std::ops::Div<LAB> for LAB {
    type Output = LAB;
    fn div(self, other: Self::Output) -> Self::Output {
        LAB {
            l: self.l / other.l,
            a: self.a / other.a,
            b: self.b / other.b,
        }
    }
}

/// Component-wise averaging of pixel values used by `Downsample` to support arbitrary pixel types
///
/// Used to naively resample 4 high-res pixels into one low-res pixel
#[doc(hidden)]
pub trait Average4 {
    fn average4(a: Self, b: Self, c: Self, d: Self) -> Self;
}

impl Average4 for f32 {
    fn average4(a: Self, b: Self, c: Self, d: Self) -> Self {
        (a + b + c + d) * 0.25
    }
}

impl Average4 for RGBAPLU {
    fn average4(a: Self, b: Self, c: Self, d: Self) -> Self {
        RGBAPLU {
            r: Average4::average4(a.r, b.r, c.r, d.r),
            g: Average4::average4(a.g, b.g, c.g, d.g),
            b: Average4::average4(a.b, b.b, c.b, d.b),
            a: Average4::average4(a.a, b.a, c.a, d.a),
        }
    }
}

impl Average4 for RGBLU {
    fn average4(a: Self, b: Self, c: Self, d: Self) -> Self {
        RGBLU {
            r: Average4::average4(a.r, b.r, c.r, d.r),
            g: Average4::average4(a.g, b.g, c.g, d.g),
            b: Average4::average4(a.b, b.b, c.b, d.b),
        }
    }
}

pub(crate) trait ToRGB {
    fn to_rgb(self, n: usize) -> RGBLU;
}

impl ToRGB for RGBAPLU {
    fn to_rgb(self, n: usize) -> RGBLU {
        let mut r = self.r;
        let mut g = self.g;
        let mut b = self.b;
        let a = self.a;
        if a < 255.0 {
            if (n & 16) != 0 {
                r += 1.0 - a;
            }
            if (n & 8) != 0 {
                g += 1.0 - a; // assumes premultiplied alpha
            }
            if (n & 32) != 0 {
                b += 1.0 - a;
            }
        }

        RGBLU { r, g, b }
    }
}

/// You can customize how images are downsampled
///
/// Multi-scale DSSIM needs to scale images down. This is it. It's supposed to return the same type of image, but half the size.
///
/// There is a default implementation that just averages 4 neighboring pixels.
#[doc(hidden)]
pub trait Downsample {
    type Output;
    fn downsample(&self) -> Option<Self::Output>;
}

impl<T> Downsample for ImgVec<T> where T: Average4 + Copy + Sync + Send {
    type Output = ImgVec<T>;
    fn downsample(&self) -> Option<Self::Output> {
        self.as_ref().downsample()
    }
}

impl<'a, T> Downsample for ImgRef<'a, T> where T: Average4 + Copy + Sync + Send {
    type Output = ImgVec<T>;
    fn downsample(&self) -> Option<Self::Output> {
        let stride = self.stride();
        let width = self.width();
        let height = self.height();

        if width < 8 || height < 8 {
            return None;
        }

        let half_height = height / 2;
        let half_width = width / 2;

        let mut scaled = Vec::with_capacity(half_width * half_height);
        scaled.extend(self.buf().chunks(stride * 2).take(half_height).flat_map(|pair| {
            let (top, bot) = pair.split_at(stride);
            let top = &top[0..half_width * 2];
            let bot = &bot[0..half_width * 2];

            return top.chunks_exact(2).zip(bot.chunks_exact(2)).map(|(a, b)| Average4::average4(a[0], a[1], b[0], b[1]));
        }));

        assert_eq!(half_width * half_height, scaled.len());
        Some(Img::new(scaled, half_width, half_height))
    }
}

#[allow(dead_code)]
pub(crate) fn worst(input: ImgRef<'_, f32>) -> ImgVec<f32> {
    let stride = input.stride();
    let half_height = input.height() / 2;
    let half_width = input.width() / 2;

    if half_height < 4 || half_width < 4 {
        return input.new_buf(input.buf().to_vec());
    }

    let mut scaled = Vec::with_capacity(half_width * half_height);
    scaled.extend(input.buf().chunks(stride * 2).take(half_height).flat_map(|pair| {
        let (top, bot) = pair.split_at(stride);
        let top = &top[0..half_width * 2];
        let bot = &bot[0..half_width * 2];

        return top.chunks_exact(2).zip(bot.chunks_exact(2)).map(|(a,b)| {
            a[0].min(a[1]).min(b[0].min(b[1]))
        });
    }));

    assert_eq!(half_width * half_height, scaled.len());
    Img::new(scaled, half_width, half_height)
}

#[allow(dead_code)]
pub(crate) fn avgworst(input: ImgRef<'_, f32>) -> ImgVec<f32> {
    let stride = input.stride();
    let half_height = input.height() / 2;
    let half_width = input.width() / 2;

    if half_height < 4 || half_width < 4 {
        return input.new_buf(input.buf().to_vec());
    }

    let mut scaled = Vec::with_capacity(half_width * half_height);
    scaled.extend(input.buf().chunks(stride * 2).take(half_height).flat_map(|pair| {
        let (top, bot) = pair.split_at(stride);
        let top = &top[0..half_width * 2];
        let bot = &bot[0..half_width * 2];

        return top.chunks_exact(2).zip(bot.chunks_exact(2)).map(|(a,b)| {
            (a[0].min(a[1]).min(b[0].min(b[1])) + ((a[0] + a[1] + b[0] + b[1]) * 0.25))*0.5
        });
    }));

    assert_eq!(half_width * half_height, scaled.len());
    Img::new(scaled, half_width, half_height)
}

#[allow(dead_code)]
pub(crate) fn avg(input: ImgRef<'_, f32>) -> ImgVec<f32> {
    let stride = input.stride();
    let half_height = input.height() / 2;
    let half_width = input.width() / 2;

    if half_height < 4 || half_width < 4 {
        return input.new_buf(input.buf().to_vec());
    }

    let mut scaled = Vec::with_capacity(half_width * half_height);
    scaled.extend(input.buf().chunks(stride * 2).take(half_height).flat_map(|pair| {
        let (top, bot) = pair.split_at(stride);
        let top = &top[0..half_width * 2];
        let bot = &bot[0..half_width * 2];

        return top.chunks_exact(2).zip(bot.chunks_exact(2)).map(|(a,b)| {
            (a[0] + a[1] + b[0] + b[1]) * 0.25
        });
    }));

    assert_eq!(half_width * half_height, scaled.len());
    Img::new(scaled, half_width, half_height)
}