1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
//! Signal generators

use num_complex::{Complex, Complex64};
use rand;
use rand::distributions::{Normal, Distribution};
use std::f64;
use std::f64::consts::PI;
use crate::signals::Signal;


pub struct SignalGen<F>
where
    F: Fn(f64) -> Complex64,
{
    gen: F,
}

impl<F> SignalGen<F>
where
    F: Fn(f64) -> Complex64,
{
    /// Create a new generator from provided function
    pub fn new(f: F) -> SignalGen<F> {
        SignalGen { gen: f }
    }

    /// Generate signal at given points
    pub fn generate(&self, points: Vec<f64>) -> Signal {
        let data = points.iter().map(|&i| (self.gen)(i)).collect();
        Signal::new(data)
    }
}

/// Impulse signal
/// x[n] = 1 if n == 0
/// x[n] = 0 if n > 0
pub fn impulse() -> SignalGen<impl Fn(f64) -> Complex64> {
    SignalGen::new(|i| {
        if i == 0. {
            Complex::new(1., 0.)
        } else {
            Complex::new(0., 0.)
        }
    })
}

/// Step signal
/// x[n] = 1 if n >= 0
/// x[n] = 0 if n < 0
pub fn step() -> SignalGen<impl Fn(f64) -> Complex64> {
    SignalGen::new(|i| {
        if i >= 0. {
            Complex::new(1., 0.)
        } else {
            Complex::new(0., 0.)
        }
    })
}

/// Complex sinusoidal signal
pub fn complex(freq: f64, offset: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let w = 2.0 * PI * freq;
    SignalGen::new(move |i| Complex::new(0., w * (i + offset / 2.)).exp())
}

/// Real value sine signal
pub fn sine(freq: f64, offset: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let w = 2.0 * PI * freq;
    SignalGen::new(move |i| Complex::new(f64::sin(w * (i + offset / 2.)), 0.))
}

/// Real value cosine signal
pub fn cosine(freq: f64, offset: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let w = 2.0 * PI * freq;
    SignalGen::new(move |i| Complex::new(f64::cos(w * (i + offset / 2.)), 0.))
}

/// Real value periodic triangle signal (with period of 1 second).
pub fn triangle(freq: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let w = 2.0 * freq;
    SignalGen::new(move |i| Complex::new((w * (i + 0.5)) % 2. - 1., 0.))
}

/// Real value periodic square signal (with period of 1 second).
pub fn square(freq: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let w = freq;
    SignalGen::new(move |i| {
        let a = w * i % 1.;
        let b = if a < -0.5 || (a > 0.0 && a < 0.5) {
            1.0
        } else {
            -1.0
        };
        Complex::new(b, 0.)
    })
}

/// A chirp is a signal in which frequency increases with time.
pub fn chirp(start_freq: f64, end_freq: f64, time: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let slope = (end_freq - start_freq) / time;
    SignalGen::new(move |i| {
        if i < 0. || i > time {
            Complex::new(0., 0.)
        } else {
            let f = slope * i + start_freq;
            let w = 2.0 * PI * f * i;
            Complex::new(0., w).exp()
        }
    })
}

/// A real noise (without imaginary part)
pub fn noise(std: f64) -> SignalGen<impl Fn(f64) -> Complex64> {
    let normal = Normal::new(0.0, std);
    SignalGen::new(move |_| {
        Complex::new(normal.sample(&mut rand::thread_rng()), 0.0)
    })
}

/// ------------------------------------------------------------------------------------------------
/// Module unit tests
/// ------------------------------------------------------------------------------------------------
#[cfg(test)]
mod tests {
    use super::*;
    use num_complex::Complex;

    #[test]
    fn test_impulse() {
        let signal = impulse().generate(vec![-4.0, 0.0, 42.0]);
        assert_eq!(signal.get(0), Complex::new(0., 0.));
        assert_eq!(signal.get(1), Complex::new(1., 0.));
        assert_eq!(signal.get(2), Complex::new(0., 0.));
    }

    #[test]
    fn test_step() {
        let signal = step().generate(vec![-4.0, 0.0, 42.0]);
        assert_eq!(signal.get(0), Complex::new(0., 0.));
        assert_eq!(signal.get(1), Complex::new(1., 0.));
        assert_eq!(signal.get(2), Complex::new(1., 0.));
    }
}