1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
//! # DMN model
//!
//! Model for Decision Requirements Graph (DRG)
//! depicted in one or more Decision Requirements Diagrams (DRD).

use crate::errors::*;
use dsntk_common::{gen_id, DsntkError, HRef, Result, Uri};
use dsntk_feel::{FeelType, Name};
use std::fmt;
use std::fmt::Display;
use std::slice::Iter;

pub const URI_FEEL: &str = "https://www.omg.org/spec/DMN/20191111/FEEL/";
pub const URI_MODEL: &str = "https://www.omg.org/spec/DMN/20191111/MODEL/";
pub const URI_UNINTERPRETED: &str = "http://www.omg.org/spec/DMN/uninterpreted/20140801";
pub const URI_XML_SCHEMA: &str = "http://www.w3.org/2001/XMLSchema";

/// [DmnId] defines possible types of unique identifiers in model.
/// Specification defines this identifier as optional, but this implementation
/// makes it mandatory, just for simplicity. When this identifier is not provided in the model,
/// a new unique UUID identifier is generated. This SHALL not be conflicting with any other identifiers.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DmnId {
  /// Identifier was provided in model.
  Provided(String),
  /// Identifier was generated during parsing (not provided in model).
  Generated(String),
}

/// [DmnElement] is the abstract superclass for the Decision Model elements.
/// It provides the optional attributes `id`, `description` and `label`,
/// which other elements will inherit.
pub trait DmnElement {
  /// Namespace the element belongs to.
  fn namespace(&self) -> &str;
  /// Name of the model the element was defined in.
  fn model_name(&self) -> &str;
  /// Returns a reference to identifier for this [DmnElement].
  /// This identifier SHALL be unique within its containing [Definitions] element.
  fn id(&self) -> &String;
  /// Returns a reference to optional identifier for this [DmnElement].
  fn opt_id(&self) -> Option<&String>;
  /// Returns reference to optional description of this [DmnElement].
  fn description(&self) -> &Option<String>;
  /// Returns reference to optional alternative short description of this [DmnElement].
  fn label(&self) -> &Option<String>;
  /// Returns reference to attached additional elements to any [DmnElement].
  fn extension_elements(&self) -> &Vec<ExtensionElement>;
  /// Returns reference to attached named extended attributes and model associations to any [DmnElement].
  fn extension_attributes(&self) -> &Vec<ExtensionAttribute>;
}

/// [NamedElement] adds attribute `name` to [DmnElement].
/// `name` attribute is required for [NamedElement].
pub trait NamedElement: DmnElement {
  /// Returns the name of this [NamedElement].
  fn name(&self) -> &str;
  /// Returns the `FEEL` name for this element.
  fn feel_name(&self) -> &Name;
}

/// [Expression] is an abstract class that describes the logic
/// by which a modeled decision shall be made, or pieces of that logic.
pub trait Expression {
  /// Optional namespace-prefixed name of the base type of this [Expression].
  fn type_ref(&self) -> &Option<String>;
}

/// [FeelTypedElement] adds the `FEEL` type attributes to element.
pub trait FeelTypedElement {
  /// Returns the optional `FEEL` type for this element.
  fn feel_type(&self) -> &Option<FeelType>;
  /// Sets `FEEL` type for this element.
  fn set_feel_type(&mut self, feel_type: FeelType);
}

/// [RequiredTypeRef] adds the required type reference to element.
pub trait RequiredTypeRef {
  /// Namespace-prefixed name of the base type of the implementor.
  fn type_ref(&self) -> &str;
}

/// [RequiredVariable] adds the required reference to [InformationItem].
pub trait RequiredVariable {
  /// Returns the reference to [InformationItem].
  fn variable(&self) -> &InformationItem;
}

/// `Invocable` is used to model the inputs of a decision whose values
/// are defined outside of the decision model.
pub trait Invocable: DmnElement + NamedElement + RequiredVariable {}

/// The abstract class [BusinessContextElement], and its concrete specializations
/// [PerformanceIndicator] and [OrganizationUnit] are placeholders,
/// anticipating a definition to be adopted from other OMG meta-models,
/// such as OMG OSM when it is further developed.
pub trait BusinessContextElement: NamedElement {
  /// The URI of this [BusinessContextElement].
  fn uri(&self) -> &Option<String>;
}

/// The [ExtensionElement] contains element from other
/// metamodels inside any [DmnElement].
///
/// Not used, prepared for further development.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ExtensionElement;

/// The [ExtensionAttribute] element contains an [ExtensionElement]
/// or a reference to an [ExtensionElement] from another metamodel.
/// An [ExtensionAttribute] also has a name
/// to define the role or purpose of the associated element.
///
/// Not used, prepared for further development.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ExtensionAttribute;

/// Enumeration of concrete instances of [BusinessContextElement].
#[derive(Debug, Clone)]
pub enum BusinessContextElementInstance {
  PerformanceIndicator(PerformanceIndicator),
  OrganizationUnit(OrganizationUnit),
}

/// [PerformanceIndicator] is a placeholder, anticipating a definition to be
/// adopted from other OMG meta-models, such as OMG OSM when it is further developed.
#[named_element]
#[dmn_element]
#[business_context_element]
#[derive(Debug, Clone)]
pub struct PerformanceIndicator {
  /// Collection of [Decision] that impact this [PerformanceIndicator].
  /// This attribute stores references
  pub(crate) impacting_decisions: Vec<HRef>,
}

impl PerformanceIndicator {
  pub fn impacting_decisions(&self) -> &Vec<HRef> {
    &self.impacting_decisions
  }
}

/// [OrganizationUnit] is a placeholder, anticipating a definition to be
/// adopted from other OMG meta-models, such as OMG OSM when it is further developed.
#[named_element]
#[dmn_element]
#[business_context_element]
#[derive(Debug, Clone)]
pub struct OrganizationUnit {
  /// Collection of [Decision] that are made by this [OrganizationUnit].
  pub(crate) decisions_made: Vec<HRef>,
  /// Collection of [Decision] that are owned by this [OrganizationUnit].
  pub(crate) decisions_owned: Vec<HRef>,
}

impl OrganizationUnit {
  pub fn decisions_made(&self) -> &Vec<HRef> {
    &self.decisions_made
  }
  pub fn decisions_owned(&self) -> &Vec<HRef> {
    &self.decisions_owned
  }
}

/// In DMN model, the [DrgElement] is the abstract superclass for all DMN elements
/// that are contained within [Definitions] and that have a graphical representation in a DRD.
/// This enumeration specifies the list of [DRGElements](DrgElement) contained in [Definitions].
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
pub enum DrgElement {
  Decision(Decision),
  InputData(InputData),
  BusinessKnowledgeModel(BusinessKnowledgeModel),
  DecisionService(DecisionService),
  KnowledgeSource(KnowledgeSource),
}

/// Enumeration of specific requirements.
pub enum Requirement {
  Information(InformationRequirement),
  Knowledge(KnowledgeRequirement),
  Authority(AuthorityRequirement),
}

/// [Definitions] element is the outermost containing object
/// for all elements of a DMN decision model.
/// It defines the scope of visibility and the namespace
/// for all contained elements.
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct Definitions {
  /// This attribute identifies the expression language used in
  /// [LiteralExpressions](LiteralExpression) within the scope
  /// of this [Definitions]. The _Default_ is FEEL.
  /// This value **MAY** be overridden on each individual [LiteralExpression].
  /// The language **SHALL** be specified in a URI format.
  pub(crate) expression_language: Option<Uri>,
  /// This attribute identifies the type language used in
  /// [LiteralExpressions](LiteralExpression) within the scope
  /// of this [Definitions]. The _Default_ is FEEL.
  /// This value **MAY** be overridden on each individual [ItemDefinition].
  /// The language **SHALL** be specified in a URI format.
  pub(crate) type_language: Option<Uri>,
  /// Name of the tool used to export the XML serialization.
  pub(crate) exporter: Option<String>,
  /// Version of the tool used to export the XML serialization.
  pub(crate) exporter_version: Option<String>,
  /// Container for the instances of [ItemDefinition] that are contained in this [Definitions].
  pub(crate) item_definitions: Vec<ItemDefinition>,
  /// Container for the instances of [DrgElement] that are contained in this [Definitions].
  pub(crate) drg_elements: Vec<DrgElement>,
  /// Container for the instances of [BusinessContextElement] that are contained in this [Definitions].
  pub(crate) business_context_elements: Vec<BusinessContextElementInstance>,
  /// Container used to import externally defined elements and make them available
  /// for use by elements in this [Definitions].
  pub(crate) imports: Vec<Import>,
  /// Optional diagram interchange information contained within this [Definitions].
  pub(crate) dmndi: Option<Dmndi>,
}

impl Definitions {
  /// Returns the reference to optional expression language used within the scope of this [Definitions].
  pub fn expression_language(&self) -> &Option<String> {
    &self.expression_language
  }

  /// Returns reference to the type language used within the scope of this [Definitions].
  pub fn type_language(&self) -> &Option<String> {
    &self.type_language
  }

  /// Returns reference to the name of the tool used to export the XML serialization.
  pub fn exporter(&self) -> &Option<String> {
    &self.exporter
  }

  /// Returns reference to the version of the tool used to export the XML serialization.
  pub fn exporter_version(&self) -> &Option<String> {
    &self.exporter_version
  }

  /// Returns reference to the container of instances of [ItemDefinition] contained in this [Definitions].
  pub fn item_definitions(&self) -> &Vec<ItemDefinition> {
    &self.item_definitions
  }

  /// Returns reference to the container of instances of [Import] contained in this [Definitions].
  pub fn imports(&self) -> &Vec<Import> {
    &self.imports
  }

  /// Returns reference to optional [Dmndi] container.
  pub fn dmndi(&self) -> &Option<Dmndi> {
    &self.dmndi
  }

  /// Returns reference to [DrgElements](DrgElement) container.
  pub fn drg_elements(&self) -> Iter<DrgElement> {
    self.drg_elements.iter()
  }

  /// Returns all decision definitions.
  pub fn decisions(&self) -> Vec<Decision> {
    self
      .drg_elements
      .iter()
      .filter_map(|drg_element| {
        if let DrgElement::Decision(decision) = drg_element {
          Some(decision.clone())
        } else {
          None
        }
      })
      .collect()
  }

  /// Returns all business knowledge model definitions.
  pub fn business_knowledge_models(&self) -> Vec<BusinessKnowledgeModel> {
    self
      .drg_elements
      .iter()
      .filter_map(|drg_element| {
        if let DrgElement::BusinessKnowledgeModel(bkm) = drg_element {
          Some(bkm.clone())
        } else {
          None
        }
      })
      .collect()
  }

  /// Returns all decision services definitions.
  pub fn decision_services(&self) -> Vec<DecisionService> {
    self
      .drg_elements
      .iter()
      .filter_map(|drg_element| {
        if let DrgElement::DecisionService(decision_service) = drg_element {
          Some(decision_service.clone())
        } else {
          None
        }
      })
      .collect()
  }

  /// Returns all knowledge source definitions.
  pub fn knowledge_sources(&self) -> Vec<&KnowledgeSource> {
    self
      .drg_elements
      .iter()
      .filter_map(|drg_element| {
        if let DrgElement::KnowledgeSource(knowledge_source) = drg_element {
          Some(knowledge_source)
        } else {
          None
        }
      })
      .collect()
  }

  /// Returns all input data definitions.
  pub fn input_data(&self) -> Vec<InputData> {
    self
      .drg_elements
      .iter()
      .filter_map(|drg_element| {
        if let DrgElement::InputData(input_data) = drg_element {
          Some(input_data.clone())
        } else {
          None
        }
      })
      .collect()
  }

  /// Returns performance indicators.
  pub fn performance_indicators(&self) -> Vec<&PerformanceIndicator> {
    self
      .business_context_elements
      .iter()
      .filter_map(|item| match item {
        BusinessContextElementInstance::PerformanceIndicator(performance_indicator) => Some(performance_indicator),
        _ => None,
      })
      .collect()
  }

  /// Returns organisation units.
  pub fn organisation_units(&self) -> Vec<&OrganizationUnit> {
    self
      .business_context_elements
      .iter()
      .filter_map(|item| match item {
        BusinessContextElementInstance::OrganizationUnit(organisation_unit) => Some(organisation_unit),
        _ => None,
      })
      .collect()
  }

  /// Returns decision with specified identifier.
  pub fn get_decision(&self, id: &str) -> Option<&Decision> {
    for drg_element in &self.drg_elements {
      if let DrgElement::Decision(decision) = drg_element {
        if decision.id() == id {
          return Some(decision);
        }
      }
    }
    None
  }

  /// Returns input data with specified identifier.
  pub fn get_input_data(&self, id: &str) -> Option<&InputData> {
    for drg_element in &self.drg_elements {
      if let DrgElement::InputData(input_data) = drg_element {
        if input_data.id() == id {
          return Some(input_data);
        }
      }
    }
    None
  }

  /// Returns business knowledge model with specified identifier.
  pub fn get_business_knowledge_model(&self, id: &str) -> Option<&BusinessKnowledgeModel> {
    for drg_element in &self.drg_elements {
      if let DrgElement::BusinessKnowledgeModel(business_knowledge_model) = drg_element {
        if business_knowledge_model.id() == id {
          return Some(business_knowledge_model);
        }
      }
    }
    None
  }

  /// Returns knowledge source with specified identifier.
  pub fn get_knowledge_source(&self, id: &str) -> Option<&KnowledgeSource> {
    for drg_element in &self.drg_elements {
      if let DrgElement::KnowledgeSource(knowledge_source) = drg_element {
        if knowledge_source.id() == id {
          return Some(knowledge_source);
        }
      }
    }
    None
  }

  /// Returns a requirement with specified identifier.
  pub fn get_requirement(&self, id: &str) -> Option<Requirement> {
    for drg_element in &self.drg_elements {
      match drg_element {
        DrgElement::Decision(decision) => {
          for knowledge_requirement in &decision.knowledge_requirements {
            if knowledge_requirement.id() == id {
              return Some(Requirement::Knowledge(knowledge_requirement.clone()));
            }
          }
          for information_requirement in &decision.information_requirements {
            if information_requirement.id() == id {
              return Some(Requirement::Information(information_requirement.clone()));
            }
          }
          for authority_requirement in &decision.authority_requirements {
            if authority_requirement.id() == id {
              return Some(Requirement::Authority(authority_requirement.clone()));
            }
          }
        }
        DrgElement::BusinessKnowledgeModel(business_knowledge_model) => {
          for knowledge_requirement in &business_knowledge_model.knowledge_requirements {
            if knowledge_requirement.id() == id {
              return Some(Requirement::Knowledge(knowledge_requirement.clone()));
            }
          }
          for authority_requirement in &business_knowledge_model.authority_requirements {
            if authority_requirement.id() == id {
              return Some(Requirement::Authority(authority_requirement.clone()));
            }
          }
        }
        DrgElement::KnowledgeSource(knowledge_source) => {
          for authority_requirement in &knowledge_source.authority_requirements {
            if authority_requirement.id() == id {
              return Some(Requirement::Authority(authority_requirement.clone()));
            }
          }
        }
        _ => {}
      }
    }
    None
  }
}

#[named_element]
#[dmn_element]
#[derive(Debug, Clone, PartialEq)]
pub struct InformationItem {
  /// Qualified name of the type of this [InformationItem].
  pub(crate) type_ref: String,
  /// Optional `FEEL` type of this [InformationItem].
  pub(crate) feel_type: Option<FeelType>,
}

impl InformationItem {
  /// Returns qualified name of the type of this [InformationItem].
  pub fn type_ref(&self) -> &String {
    &self.type_ref
  }
}

impl FeelTypedElement for InformationItem {
  /// Returns a reference to optional `FEEL` type of this element.
  fn feel_type(&self) -> &Option<FeelType> {
    &self.feel_type
  }
  /// Sets the `FEEL` type for this element.
  fn set_feel_type(&mut self, feel_type: FeelType) {
    self.feel_type = Some(feel_type);
  }
}

/// [InputData] is used to model the inputs of a decision whose values
/// are defined outside of the decision model.
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct InputData {
  /// The instance of [InformationItem] that stores the result of this [InputData].
  pub(crate) variable: InformationItem,
}

impl RequiredVariable for InputData {
  /// Returns reference to a variable for this [BusinessKnowledgeModel].  
  fn variable(&self) -> &InformationItem {
    &self.variable
  }
}

/// `Import` class is used when referencing external elements,
/// either DMN [DRGElement](DrgElement) or [ItemDefinition] instances contained
/// in other [Definitions] elements, or non-DMN elements,
/// such as an XML Schema or a PMML file.
#[named_element]
#[dmn_element]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Import {
  /// Specifies the style of import associated with this [Import].
  pub(crate) import_type: String,
  /// Identifies the location of the imported element.
  pub(crate) location_uri: Option<String>,
}

impl Import {
  /// Returns reference to the import type for this [Import].
  pub fn import_type(&self) -> &str {
    &self.import_type
  }

  /// Returns reference to the optional location URI for this [Import].
  pub fn location_uri(&self) -> &Option<String> {
    &self.location_uri
  }

  /// Returns reference to the namespace of this [Import].
  pub fn namespace(&self) -> &str {
    &self.namespace
  }
}

/// An enumeration of concrete instances of abstract [Expression], which are:
/// - [Conditional],
/// - [Context],
/// - [DecisionTable],
/// - [Every],
/// - [Filter],
/// - [For],
/// - [FunctionDefinition],
/// - [Invocation],
/// - [List],
/// - [LiteralExpression],
/// - [Relation],
/// - [Some].
#[derive(Debug, Clone, PartialEq)]
pub enum ExpressionInstance {
  Conditional(Box<Conditional>),
  Context(Box<Context>),
  DecisionTable(Box<DecisionTable>),
  Every(Box<Every>),
  Filter(Box<Filter>),
  For(Box<For>),
  FunctionDefinition(Box<FunctionDefinition>),
  Invocation(Box<Invocation>),
  List(Box<List>),
  LiteralExpression(Box<LiteralExpression>),
  Relation(Box<Relation>),
  Some(Box<Some>),
}

/// A [Context] is composed of any number of model context entries, which are instances of [ContextEntry].
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Context {
  /// This attribute lists the instances of [ContextEntry] that compose this [Context].
  pub(crate) context_entries: Vec<ContextEntry>,
}

impl Context {
  /// Return a reference to context entries that compose this [Context].
  pub fn context_entries(&self) -> &Vec<ContextEntry> {
    &self.context_entries
  }
}

/// The class [ContextEntry] is used to model `FEEL` context entries when a context is modeled as a [Context] element.
#[derive(Debug, Clone, PartialEq)]
pub struct ContextEntry {
  /// The instance of [InformationItem] that is contained in this [ContextEntry],
  /// and whose name is the key in the modeled context entry.
  pub variable: Option<InformationItem>,
  /// The instance of [Expression] that is the expression in this [ContextEntry].
  pub value: ExpressionInstance,
}

/// [LiteralExpression] is used to model a value expression whose value
/// is specified by text in some specified expression language.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LiteralExpression {
  /// The text of this [LiteralExpression].
  /// It SHALL be a valid expression in the `expression_language`.
  pub(crate) text: Option<String>,
  /// Identifies the expression language used in this [LiteralExpression].
  pub(crate) expression_language: Option<String>,
  /// The instance of [ImportedValue](Import) that specifies
  /// where the text of this [LiteralExpression] is located.
  pub(crate) imported_values: Option<Import>,
}

impl LiteralExpression {
  pub fn text(&self) -> &Option<String> {
    &self.text
  }

  pub fn expression_language(&self) -> Option<String> {
    self.expression_language.clone()
  }

  pub fn imported_values(&self) -> Option<Import> {
    self.imported_values.clone()
  }
}

/// [Invocation] is a mechanism that permits the evaluation of one value expression – the invoked expression – inside
/// another value expression – the invoking expression – by binding locally the input variables of the invoked
/// expression to values inside the invoking expression.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Invocation {
  /// An expression whose value is a function.
  pub(crate) called_function: ExpressionInstance,
  /// Instances of [Binding] used to bind the formal parameters of the called function in this [Invocation].
  pub(crate) bindings: Vec<Binding>,
}

impl Invocation {
  /// Returns a reference to called function which is an instance of [Expression].
  pub fn called_function(&self) -> &ExpressionInstance {
    &self.called_function
  }
  /// Returns a reference to the collection of binding instances.
  pub fn bindings(&self) -> &Vec<Binding> {
    &self.bindings
  }
}

#[derive(Debug, Clone, PartialEq)]
pub struct Binding {
  /// The [InformationItem] on which the `calledFunction` of the owning
  /// instance of [Invocation] depends that is bound by this [Binding].
  pub(crate) parameter: InformationItem,
  /// The instance of [Expression] to which the parameter in this [Binding] is
  /// bound when the owning instance of [Invocation] is evaluated.
  pub(crate) binding_formula: Option<ExpressionInstance>,
}

impl Binding {
  /// Returns a reference to parameter.
  pub fn parameter(&self) -> &InformationItem {
    &self.parameter
  }
  /// Returns a reference to binding formula.
  pub fn binding_formula(&self) -> &Option<ExpressionInstance> {
    &self.binding_formula
  }
}

/// [Decision]
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct Decision {
  /// A natural language question that characterizes the [Decision],
  /// such that the output of the [Decision] is an answer to the question.
  pub(crate) question: Option<String>,
  /// A natural language description of the answers allowed for the question
  /// such as `Yes/No`, a list of allowed values, a range of numeric values etc.
  pub(crate) allowed_answers: Option<String>,
  /// The instance of [InformationItem] that stores the result of this [Decision].
  pub(crate) variable: InformationItem,
  /// The instance of the [Expression] for the [Decision].
  pub(crate) decision_logic: Option<ExpressionInstance>,
  /// Collection of the instances of [InformationRequirement] that compose this [Decision].
  pub(crate) information_requirements: Vec<InformationRequirement>,
  /// Collection of the instances of [KnowledgeRequirement] that compose this [Decision].
  pub(crate) knowledge_requirements: Vec<KnowledgeRequirement>,
  /// Collection of the instances of [AuthorityRequirement] that compose this [Decision].
  pub(crate) authority_requirements: Vec<AuthorityRequirement>,
  //TODO add the following:
  //  supported_objectives
  //  impacted_performance_indicator
  //  decision_maker
  //  decision_owner
  //  using_processes
  //  using_tasks
}

impl Decision {
  /// Returns a reference to a natural language question that characterizes the [Decision].
  pub fn question(&self) -> &Option<String> {
    &self.question
  }
  /// Returns a reference to a natural language description of the answers allowed for the question defined in this [Decision].
  pub fn allowed_answers(&self) -> &Option<String> {
    &self.allowed_answers
  }
  /// Return a reference to a variable that stores the result of this [Decision].
  pub fn variable(&self) -> &InformationItem {
    &self.variable
  }
  /// Returns a reference to optional [Expression].
  pub fn decision_logic(&self) -> &Option<ExpressionInstance> {
    &self.decision_logic
  }
  /// Returns a reference to collection of [InformationRequirement].
  pub fn information_requirements(&self) -> &Vec<InformationRequirement> {
    &self.information_requirements
  }
  /// Returns a reference to collection of [KnowledgeRequirement].
  pub fn knowledge_requirements(&self) -> &Vec<KnowledgeRequirement> {
    &self.knowledge_requirements
  }
  /// Returns a reference to collection of [AuthorityRequirement].
  pub fn authority_requirements(&self) -> &Vec<AuthorityRequirement> {
    &self.authority_requirements
  }
}

/// The class [InformationRequirement] is used to model an information requirement,
/// as represented by a plain arrow in a DRD.
#[dmn_element]
#[derive(Debug, Clone)]
pub struct InformationRequirement {
  /// Reference to [Decision] that this [InformationRequirement] associates
  /// with its containing  [Decision] element.
  pub(crate) required_decision: Option<HRef>,
  /// Reference to [InputData] that this [InformationRequirement] associates
  /// with its containing [Decision] element.
  pub(crate) required_input: Option<HRef>,
}

impl InformationRequirement {
  /// Returns reference to optional URI pointing a [Decision].
  pub fn required_decision(&self) -> &Option<HRef> {
    &self.required_decision
  }

  /// Returns reference to optional URI pointing an [InputData].
  pub fn required_input(&self) -> &Option<HRef> {
    &self.required_input
  }
}

/// The class [KnowledgeRequirement] is used to model a knowledge requirement,
/// as represented by a dashed arrow in a DRD.
#[dmn_element]
#[derive(Debug, Clone)]
pub struct KnowledgeRequirement {
  /// Reference to [Invocable] that this [KnowledgeRequirement] associates with
  /// its containing [Decision] or [BusinessKnowledgeModel] element.
  pub(crate) required_knowledge: HRef,
}

impl KnowledgeRequirement {
  /// Returns a reference to the [Invocable].
  pub fn required_knowledge(&self) -> &HRef {
    &self.required_knowledge
  }
}

/// The class [AuthorityRequirement] is used to model an authority requirement,
/// as represented by an arrow drawn with a dashed line and a filled circular head in a DRD
#[dmn_element]
#[derive(Debug, Clone)]
pub struct AuthorityRequirement {
  /// The instance of [KnowledgeSource] that this [AuthorityRequirement] associates
  /// with its containing [KnowledgeSource], [Decision] or [BusinessKnowledgeModel] element.
  pub(crate) required_authority: Option<HRef>,
  /// The instance of [Decision] that this [AuthorityRequirement] associates
  /// with its containing [KnowledgeSource] element.
  pub(crate) required_decision: Option<HRef>,
  /// The instance of [InputData] that this [AuthorityRequirement] associates
  /// with its containing [KnowledgeSource] element.
  pub(crate) required_input: Option<HRef>,
}

impl AuthorityRequirement {
  /// Returns reference to optional [KnowledgeSource].
  pub fn required_authority(&self) -> &Option<HRef> {
    &self.required_authority
  }
  /// Returns reference to optional [Decision].
  pub fn required_decision(&self) -> &Option<HRef> {
    &self.required_decision
  }
  /// Returns reference to optional [InputData].
  pub fn required_input(&self) -> &Option<HRef> {
    &self.required_input
  }
}

/// The class [KnowledgeSource] is used to model authoritative knowledge sources in a decision model.
/// In a DRD, an instance of [KnowledgeSource] is represented by a `knowledge source` diagram element.
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct KnowledgeSource {
  /// Collection of the instances of [AuthorityRequirement] that compose this [Decision].
  pub(crate) authority_requirements: Vec<AuthorityRequirement>,
}

impl KnowledgeSource {
  /// Returns a reference to collection of [AuthorityRequirement].
  pub fn authority_requirements(&self) -> &Vec<AuthorityRequirement> {
    &self.authority_requirements
  }
}

/// A business knowledge model has an abstract part, representing reusable,
/// invocable decision logic, and a concrete part, which mandates that the decision logic
/// must be a single FEEL boxed function definition.
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct BusinessKnowledgeModel {
  /// Variable that is bound to the function defined by the [FunctionDefinition] for this [BusinessKnowledgeModel].
  pub(crate) variable: InformationItem,
  /// The function that encapsulates the logic encapsulated by this [BusinessKnowledgeModel].
  pub(crate) encapsulated_logic: Option<FunctionDefinition>,
  /// This attribute lists the instances of [KnowledgeRequirement] that compose this [BusinessKnowledgeModel].
  pub(crate) knowledge_requirements: Vec<KnowledgeRequirement>,
  /// This attribute lists the instances of [AuthorityRequirement] that compose this [BusinessKnowledgeModel].
  pub(crate) authority_requirements: Vec<AuthorityRequirement>,
}

impl BusinessKnowledgeModel {
  /// Returns reference to a variable for this [BusinessKnowledgeModel].
  pub fn encapsulated_logic(&self) -> &Option<FunctionDefinition> {
    &self.encapsulated_logic
  }
  /// Returns reference to the collection of instances of [KnowledgeRequirement] that compose this [BusinessKnowledgeModel].
  pub fn knowledge_requirements(&self) -> &Vec<KnowledgeRequirement> {
    &self.knowledge_requirements
  }
  /// Returns reference to the collection of instances of [AuthorityRequirement] that compose this [BusinessKnowledgeModel].
  pub fn authority_requirements(&self) -> &Vec<AuthorityRequirement> {
    &self.authority_requirements
  }
}

impl RequiredVariable for BusinessKnowledgeModel {
  /// Returns reference to a variable for this [BusinessKnowledgeModel].
  fn variable(&self) -> &InformationItem {
    &self.variable
  }
}

/// The [DecisionService] class is used to define named decision services
/// against the decision model contained in an instance of [Definitions].
#[named_element]
#[dmn_element]
#[derive(Debug, Clone)]
pub struct DecisionService {
  /// Variable for this [DecisionService].
  pub(crate) variable: InformationItem,
  /// Collection of references to the instances of [Decision] required to be output by this [DecisionService].
  pub(crate) output_decisions: Vec<HRef>,
  /// Collection of references to the instances of [Decision] to be encapsulated in this [DecisionService].
  pub(crate) encapsulated_decisions: Vec<HRef>,
  /// Collection of references to the instances of [Decision] required as input by this [DecisionService].
  pub(crate) input_decisions: Vec<HRef>,
  /// Collection of references to the instances of [InputData] required as input by this [DecisionService].
  pub(crate) input_data: Vec<HRef>,
}

impl DecisionService {
  /// Returns a reference to collection of references to input [Decision]s for this [DecisionService].
  pub fn input_decisions(&self) -> &Vec<HRef> {
    &self.input_decisions
  }
  /// Returns a reference to collection of references to encapsulated [Decision]s for this [DecisionService].
  pub fn encapsulated_decisions(&self) -> &Vec<HRef> {
    &self.encapsulated_decisions
  }
  /// Returns a reference to collection of references to output [Decision]s for this [DecisionService].
  pub fn output_decisions(&self) -> &Vec<HRef> {
    &self.output_decisions
  }
  /// Returns a reference to collection of references to [InputData] for this [DecisionService].
  pub fn input_data(&self) -> &Vec<HRef> {
    &self.input_data
  }
}

impl RequiredVariable for DecisionService {
  /// Returns reference to a variable for this [DecisionService].
  fn variable(&self) -> &InformationItem {
    &self.variable
  }
}

/// Item definition types.
#[derive(Debug, Clone, PartialEq)]
pub enum ItemDefinitionType {
  SimpleType(FeelType),
  ReferencedType(String, String),
  ComponentType,
  CollectionOfSimpleType(FeelType),
  CollectionOfReferencedType(String, String),
  CollectionOfComponentType,
  FunctionType,
}

/// [ItemDefinition] is used to model the inputs of a decision,
/// whose values are defined outside of the decision model.
#[named_element]
#[dmn_element]
#[expression]
#[derive(Debug, Clone)]
pub struct ItemDefinition {
  /// This attribute identifies the type language used to specify the base
  /// type of this [ItemDefinition]. This value overrides the type
  /// language specified in the [Definitions] element. The default is `FEEL`.
  /// The language `SHALL` be specified in an URI format.
  pub(crate) type_language: Option<String>,
  /// This attribute contains `FEEL` built-in type only when the `type_language` attribute
  /// is `FEEL` and the `type_ref` attribute defines one of the built-in `FEEL` types.
  pub(crate) feel_type: Option<FeelType>,
  /// Possible values or ranges of values in the base type that are allowed in this [ItemDefinition].
  pub(crate) allowed_values: Option<UnaryTests>,
  /// Defines zero or more nested [ItemDefinitions](ItemDefinition) that compose this [ItemDefinition].
  pub(crate) item_components: Vec<ItemDefinition>,
  /// Setting this flag to true indicates that the actual values defined by
  /// this [ItemDefinition] are collections of allowed values.
  /// The default value is [false].
  pub(crate) is_collection: bool,
  /// Describes an optional [FunctionItem] that compose this [ItemDefinition].
  pub(crate) function_item: Option<FunctionItem>,
}

impl ItemDefinition {
  /// Returns reference to the type language used within the scope of this [ItemDefinition].
  pub fn type_language(&self) -> &Option<String> {
    &self.type_language
  }
  /// Returns reference to possible values or ranges of values
  /// in the base type that are allowed in this [ItemDefinition].
  pub fn allowed_values(&self) -> &Option<UnaryTests> {
    &self.allowed_values
  }
  /// Returns reference to nested [ItemDefinitions](ItemDefinition) that compose this [ItemDefinition].
  pub fn item_components(&self) -> &Vec<ItemDefinition> {
    &self.item_components
  }
  /// Returns mutable reference to nested [ItemDefinitions](ItemDefinition) that compose this [ItemDefinition].
  pub fn item_components_mut(&mut self) -> &mut Vec<ItemDefinition> {
    &mut self.item_components
  }
  /// Returns flag indicating if the actual values are collections of allowed values.
  pub fn is_collection(&self) -> bool {
    self.is_collection
  }
  /// Returns a reference to optional `FEEL` type.
  pub fn feel_type(&self) -> &Option<FeelType> {
    &self.feel_type
  }
  /// Sets the `FEEL` type for this element.
  pub fn set_feel_type(&mut self, feel_type: FeelType) {
    self.feel_type = Some(feel_type);
  }
  /// Returns a reference to an optional [FunctionItem] that compose this [ItemDefinition].
  pub fn function_item(&self) -> &Option<FunctionItem> {
    &self.function_item
  }
}

/// [UnaryTests] is used to model a boolean test, where the argument
/// to be tested is implicit or denoted with a **?**.
/// Test is specified by text in some specified expression language.
#[derive(Debug, Clone)]
pub struct UnaryTests {
  /// The text of this [UnaryTests].
  /// It SHALL be a valid expression in the expressionLanguage.
  pub(crate) text: Option<String>,
  /// This attribute identifies the expression language used in this [UnaryTests].
  /// This value overrides the expression language specified for the containing
  /// instance of DecisionRequirementDiagram.
  /// The language SHALL be specified in a URI format.
  pub(crate) expression_language: Option<String>,
}

impl UnaryTests {
  /// Returns reference to optional text of this [UnaryTests].
  pub fn text(&self) -> &Option<String> {
    &self.text
  }
  /// Returns reference to optional expression language used in this [UnaryTests].
  pub fn expression_language(&self) -> &Option<String> {
    &self.expression_language
  }
}

/// [FunctionItem] defines the signature of a function:
/// the parameters and the output type of the function.
#[derive(Debug, Clone)]
pub struct FunctionItem {
  /// Reference to output type of the function.
  pub(crate) output_type_ref: Option<String>,
  /// Function parameters as [InformationItems](InformationItem).
  pub(crate) parameters: Vec<InformationItem>,
}

impl FunctionItem {
  /// Returns reference to output type of function.
  pub fn output_type_ref(&self) -> &Option<String> {
    &self.output_type_ref
  }
  /// Returns reference to function parameters defined
  /// as collection of [InformationItems](InformationItem).
  pub fn parameters(&self) -> &Vec<InformationItem> {
    &self.parameters
  }
}

/// Defines the type of the [FunctionDefinition].
/// The default value is `FEEL`. Supported values also include `Java` and `PMML`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FunctionKind {
  Feel,
  Java,
  Pmml,
}

/// [FunctionItem] defines the signature of a function:
/// the parameters and the output type of the function.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct FunctionDefinition {
  /// Container for instances of [InformationItem] that are the parameters of this [FunctionDefinition].
  pub(crate) formal_parameters: Vec<InformationItem>,
  /// The instance of [Expression] that is the body in this [FunctionDefinition].
  pub(crate) body: Option<ExpressionInstance>,
  /// Type of this [FunctionDefinition], the default value is FEEL.
  pub(crate) kind: FunctionKind,
}

impl FunctionDefinition {
  /// Returns reference to container of [InformationItem] of this [FunctionDefinition].
  pub fn formal_parameters(&self) -> &Vec<InformationItem> {
    &self.formal_parameters
  }
  /// Returns reference to [Expression] that is the body in this [FunctionDefinition].
  pub fn body(&self) -> &Option<ExpressionInstance> {
    &self.body
  }
  /// Returns the type of this [FunctionDefinition].
  pub fn kind(&self) -> &FunctionKind {
    &self.kind
  }
}

/// A [Relation] is convenient shorthand for a list of similar contexts.
/// A [Relation] has a column instead of repeated `ContextEntry`s,
/// and a `List` is used for every row, with one of the `List`’s
/// expression for each column value.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Relation {
  /// This attribute lists the instances of [List] that are the rows in this [Relation].
  pub(crate) rows: Vec<List>,
  /// This attributes lists the instances of [InformationItem] that define the columns in this [Relation].
  pub(crate) columns: Vec<InformationItem>,
}

impl Relation {
  /// Returns a reference to collection of relation's rows.
  pub fn rows(&self) -> &Vec<List> {
    &self.rows
  }
  /// Returns a reference to collection of relation's columns.
  pub fn columns(&self) -> &Vec<InformationItem> {
    &self.columns
  }
}

/// A [List] is simply a list of elements, which are instances of [Expression]s.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct List {
  /// This attribute lists the instances of [Expression] that are the elements of this [List].
  pub(crate) elements: Vec<ExpressionInstance>,
}

impl List {
  /// Returns a reference to collection of list's elements.
  pub fn elements(&self) -> &Vec<ExpressionInstance> {
    &self.elements
  }
}

/// A [Conditional] is a representation of a visual way to express an if statement.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Conditional {
  /// This attribute holds the expression that is evaluated by the conditional expression.
  pub(crate) if_expression: ChildExpression,
  /// This attribute holds the expression that will be evaluated when the condition in the if statement evaluates to `true`.
  pub(crate) then_expression: ChildExpression,
  /// This attribute holds the expression that will be evaluated when the condition in the if statement evaluates to `false`.
  pub(crate) else_expression: ChildExpression,
}

impl Conditional {
  pub fn if_expression(&self) -> &ChildExpression {
    &self.if_expression
  }

  pub fn then_expression(&self) -> &ChildExpression {
    &self.then_expression
  }

  pub fn else_expression(&self) -> &ChildExpression {
    &self.else_expression
  }
}

/// A [Filter] is a visual way to express list filtering.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Filter {
  /// This attribute holds the expression that is evaluate as the collection to be filtered.
  pub(crate) in_expression: ChildExpression,
  /// This attribute holds the expression that is used to filter the collection.
  pub(crate) match_expression: ChildExpression,
}

impl Filter {
  pub fn in_expression(&self) -> &ChildExpression {
    &self.in_expression
  }

  pub fn match_expression(&self) -> &ChildExpression {
    &self.match_expression
  }
}

/// A [For] is a visual representation of a loop.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct For {
  /// This attribute holds name of the iterator variable that will be populated at each iteration.
  pub(crate) iterator_variable: String,
  /// This attribute holds the expression that is evaluated as the collection to be processed.
  pub(crate) in_expression: TypedChildExpression,
  /// This attribute holds the expression that is evaluated to create the new collection that will be returned.
  pub(crate) return_expression: ChildExpression,
}

impl For {
  pub fn iterator_variable(&self) -> &String {
    &self.iterator_variable
  }

  pub fn in_expression(&self) -> &TypedChildExpression {
    &self.in_expression
  }

  pub fn return_expression(&self) -> &ChildExpression {
    &self.return_expression
  }
}

/// A [Every] is a visual representation of an expression where all
/// `satisfies` needs to be true for it to return true.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Every {
  /// This attribute holds name of the iterator variable that will be populated at each iteration.
  pub(crate) iterator_variable: String,
  /// This attribute holds the expression that is evaluated as the collection to be processed.
  pub(crate) in_expression: TypedChildExpression,
  /// This attribute holds the expression that is evaluated to determine if the current item satisfies a condition.
  pub(crate) satisfies_expression: ChildExpression,
}

impl Every {
  pub fn iterator_variable(&self) -> &String {
    &self.iterator_variable
  }

  pub fn in_expression(&self) -> &TypedChildExpression {
    &self.in_expression
  }

  pub fn satisfies_expression(&self) -> &ChildExpression {
    &self.satisfies_expression
  }
}

/// A [Some] is a visual representation of an expression where at least one of the
/// `satisfies` needs to be true for it to return true.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct Some {
  /// This attribute holds name of the iterator variable that will be populated at each iteration.
  pub(crate) iterator_variable: String,
  /// This attribute holds the expression that is evaluated as the collection to be processed.
  pub(crate) in_expression: TypedChildExpression,
  /// This attribute holds the expression that is evaluated to determine if the current item satisfies a condition.
  pub(crate) satisfies_expression: ChildExpression,
}

impl Some {
  pub fn iterator_variable(&self) -> &String {
    &self.iterator_variable
  }

  pub fn in_expression(&self) -> &TypedChildExpression {
    &self.in_expression
  }

  pub fn satisfies_expression(&self) -> &ChildExpression {
    &self.satisfies_expression
  }
}

#[derive(Debug, Clone, PartialEq)]
pub struct ChildExpression {
  /// Optional identifier of this [ChildExpression].
  pub(crate) id: DmnId,
  /// The instance of [Expression] trait that is the expression in this [ChildExpression].
  pub(crate) value: ExpressionInstance,
}

impl ChildExpression {
  pub fn id(&self) -> &DmnId {
    &self.id
  }

  pub fn value(&self) -> &ExpressionInstance {
    &self.value
  }
}

#[expression]
#[derive(Debug, Clone, PartialEq)]
pub struct TypedChildExpression {
  /// Optional identifier of this [TypedChildExpression].
  pub(crate) id: DmnId,
  /// The instance of [Expression] trait that is the expression in this [TypedChildExpression].
  pub(crate) value: ExpressionInstance,
}

impl TypedChildExpression {
  pub fn id(&self) -> &DmnId {
    &self.id
  }

  pub fn value(&self) -> &ExpressionInstance {
    &self.value
  }
}

/// Decision table.
#[dmn_element]
#[expression]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DecisionTable {
  /// Information item name, for which the decision table is its value expression.
  /// This is usually the name of the decision or the name of business knowledge model for
  /// which the decision table provides the decision logic.
  pub(crate) information_item_name: Option<String>,
  /// List of instances of input clause that compose this decision table.
  pub(crate) input_clauses: Vec<InputClause>,
  /// List of instances of output clause that compose this decision table.
  pub(crate) output_clauses: Vec<OutputClause>,
  /// List of instances of rule annotation clause that compose this decision table.
  pub(crate) annotations: Vec<RuleAnnotationClause>,
  /// List of instances of decision rule that compose this decision table.
  pub(crate) rules: Vec<DecisionRule>,
  /// Hit policy associated with the instance of the decision table.
  pub(crate) hit_policy: HitPolicy,
  /// Optional aggregation type when the hit policy is `COLLECT`.
  pub(crate) aggregation: Option<BuiltinAggregator>,
  /// Preferred representation of the instance of the decision table.
  pub(crate) preferred_orientation: DecisionTableOrientation,
  /// Optional output label for the description of the decision table output,
  /// may be the same as the name of the information item for which the
  /// decision table is the value expression.
  pub(crate) output_label: Option<String>,
}

impl Display for DecisionTable {
  /// Implements [Display] trait for [DecisionTable].
  fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    let mut buffer = String::new();
    buffer.push_str("Decision table:\n");
    buffer.push_str(format!(">> preferred orientation: {}\n", self.preferred_orientation).as_str());
    buffer.push_str(">> information item name: ");
    if let Some(text) = &self.information_item_name {
      buffer.push_str(format!("\n'{text}'\n").as_str());
    } else {
      buffer.push_str("none\n");
    }
    buffer.push_str(format!(">> hit policy: {}\n", self.hit_policy).as_str());
    buffer.push_str(">> aggregation: ");
    if let Some(aggregation) = &self.aggregation {
      buffer.push_str(format!("{aggregation}\n").as_str());
    } else {
      buffer.push_str("none\n");
    }
    buffer.push_str(">> output label: ");
    if let Some(text) = &self.output_label {
      buffer.push_str(format!("\n'{text}'\n").as_str());
    } else {
      buffer.push_str("none\n");
    }
    write!(f, "{buffer}")
  }
}

impl DecisionTable {
  /// Creates a new decision table.
  #[allow(clippy::too_many_arguments)]
  pub fn new(
    information_item_name: Option<String>,
    input_clauses: Vec<InputClause>,
    output_clauses: Vec<OutputClause>,
    annotations: Vec<RuleAnnotationClause>,
    rules: Vec<DecisionRule>,
    hit_policy: HitPolicy,
    aggregation: Option<BuiltinAggregator>,
    preferred_orientation: DecisionTableOrientation,
    output_label: Option<String>,
  ) -> Self {
    Self {
      namespace: "".to_string(),
      model_name: "".to_string(),
      id: DmnId::Generated(gen_id()),
      description: None,
      label: None,
      extension_elements: vec![],
      extension_attributes: vec![],
      type_ref: None,
      information_item_name,
      input_clauses,
      output_clauses,
      annotations,
      rules,
      hit_policy,
      aggregation,
      preferred_orientation,
      output_label,
    }
  }

  /// Returns the information item name.
  pub fn information_item_name(&self) -> &Option<String> {
    &self.information_item_name
  }

  /// Returns an iterator over input clauses.
  pub fn input_clauses(&self) -> Iter<InputClause> {
    self.input_clauses.iter()
  }

  /// Returns an iterator over output clauses.
  pub fn output_clauses(&self) -> Iter<OutputClause> {
    self.output_clauses.iter()
  }

  /// Returns an iterator over annotations.
  pub fn annotations(&self) -> Iter<RuleAnnotationClause> {
    self.annotations.iter()
  }

  /// Returns an iterator over rules.
  pub fn rules(&self) -> Iter<DecisionRule> {
    self.rules.iter()
  }

  /// Returns the [HitPolicy] of this decision table.
  pub fn hit_policy(&self) -> HitPolicy {
    self.hit_policy
  }

  /// Returns the aggregation when the [HitPolicy] is `COLLECT`.
  pub fn aggregation(&self) -> &Option<BuiltinAggregator> {
    &self.aggregation
  }

  /// Returns preferred orientation for this decision table.
  pub fn preferred_orientation(&self) -> &DecisionTableOrientation {
    &self.preferred_orientation
  }

  /// Return an output label.
  pub fn output_label(&self) -> &Option<String> {
    &self.output_label
  }

  /// Returns `true` when allowed input and/or allowed output values are present in decision table.
  pub fn allowed_values_present(&self) -> bool {
    for input_clause in &self.input_clauses {
      if input_clause.allowed_input_values.is_some() {
        return true;
      }
    }
    for output_clause in &self.output_clauses {
      if output_clause.allowed_output_values.is_some() {
        return true;
      }
    }
    false
  }
}

/// Orientation of the decision table.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DecisionTableOrientation {
  /// Decision table is presented horizontally, rules are presented as rows.
  RuleAsRow,
  /// Decision table is presented vertically, rules are presented as columns.
  RuleAsColumn,
  /// Decision table is presented as crosstab, rules are composed from two input dimensions.
  CrossTable,
}

impl Display for DecisionTableOrientation {
  /// Implements [Display] trait for [DecisionTableOrientation].
  fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    match self {
      DecisionTableOrientation::RuleAsRow => write!(f, "Rule-as-Row"),
      DecisionTableOrientation::RuleAsColumn => write!(f, "Rule-as-Column"),
      DecisionTableOrientation::CrossTable => write!(f, "CrossTable"),
    }
  }
}

impl TryFrom<&str> for DecisionTableOrientation {
  type Error = DsntkError;
  /// Tries to construct a decision table orientation from its text representation.
  fn try_from(value: &str) -> Result<Self, Self::Error> {
    match value.trim() {
      "Rule-as-Row" => Ok(DecisionTableOrientation::RuleAsRow),
      "Rule-as-Column" => Ok(DecisionTableOrientation::RuleAsColumn),
      "CrossTable" => Ok(DecisionTableOrientation::CrossTable),
      other => Err(err_invalid_decision_table_orientation(other)),
    }
  }
}

/// Hit policy.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum HitPolicy {
  /// `UNIQUE` hit policy. No overlapping rules are allowed, only single rule can be matched.
  /// This is the default value for hit policy. Crosstab decision tables may have only unique hit policy.
  Unique,
  /// `ANY` hit policy. Rules may overlap, but all matching rules show equal output entries.
  /// If matching rules have non-equal output entries, this policy is incorrect and the result is undefined.
  Any,
  /// `PRIORITY` hit policy. Multiple rules can match, with different output entries for each output.
  /// This policy returns matching rule with the highest priority. Output priorities are specified
  /// in the ordered list of output values, in decreasing order of priority.
  Priority,
  /// `FIRST` hit policy...
  First,
  /// `COLLECT` hit policy...
  Collect(BuiltinAggregator),
  /// `OUTPUT ORDER` hit policy...
  OutputOrder,
  /// `RULE ORDER` hit policy...
  RuleOrder,
}

impl Display for HitPolicy {
  /// Implements [Display] trait for [HitPolicy].
  fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    match self {
      HitPolicy::Unique => write!(f, "U"),
      HitPolicy::Any => write!(f, "A"),
      HitPolicy::Priority => write!(f, "P"),
      HitPolicy::First => write!(f, "F"),
      HitPolicy::Collect(aggregator) => write!(f, "{aggregator}"),
      HitPolicy::OutputOrder => write!(f, "O"),
      HitPolicy::RuleOrder => write!(f, "R"),
    }
  }
}

impl TryFrom<&str> for HitPolicy {
  type Error = DsntkError;
  /// Creates a hit policy from text.
  fn try_from(value: &str) -> Result<Self, Self::Error> {
    match value.trim() {
      "U" => Ok(HitPolicy::Unique),
      "A" => Ok(HitPolicy::Any),
      "P" => Ok(HitPolicy::Priority),
      "F" => Ok(HitPolicy::First),
      "R" => Ok(HitPolicy::RuleOrder),
      "O" => Ok(HitPolicy::OutputOrder),
      "C" => Ok(HitPolicy::Collect(BuiltinAggregator::List)),
      "C+" => Ok(HitPolicy::Collect(BuiltinAggregator::Sum)),
      "C#" => Ok(HitPolicy::Collect(BuiltinAggregator::Count)),
      "C<" => Ok(HitPolicy::Collect(BuiltinAggregator::Min)),
      "C>" => Ok(HitPolicy::Collect(BuiltinAggregator::Max)),
      other => Err(err_invalid_decision_table_hit_policy(other)),
    }
  }
}

/// Aggregator function for `COLLECT` [hit policy](HitPolicy).
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum BuiltinAggregator {
  /// The result of the decision table is a list of output entries.
  List,
  /// The result of the decision table is the number of outputs.
  Count,
  /// The result of the decision table is the sum of all the outputs.
  Sum,
  /// The result of the decision table is the smallest value of all the outputs.
  Min,
  /// The result of the decision table is the largest value of all the outputs.
  Max,
}

impl Display for BuiltinAggregator {
  /// Implements [Display] trait for [BuiltinAggregator].
  fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    write!(
      f,
      "{}",
      match self {
        BuiltinAggregator::List => "C",
        BuiltinAggregator::Count => "C#",
        BuiltinAggregator::Sum => "C+",
        BuiltinAggregator::Min => "C<",
        BuiltinAggregator::Max => "C>",
      }
    )
  }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InputClause {
  /// The subject of this input clause, text representation of unary tests.
  pub input_expression: String,
  /// Optional unary tests that constrain the result of input expression of this input clause.
  pub allowed_input_values: Option<String>,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OutputClause {
  /// Type reference may specify the type to be used as decision table's output when more than one output clause is present.
  pub type_ref: Option<String>,
  /// The name of the output component when the decision table contains more than one output clause.
  pub name: Option<String>,
  /// Unary tests that constrain the result of output entries corresponding to this output clause.
  pub allowed_output_values: Option<String>,
  /// Default output expression, selected in incomplete table when no rules match for the decision table.
  pub default_output_entry: Option<String>,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RuleAnnotationClause {
  /// Name that is used as the name of the rule annotation column of the containing decision table.
  pub name: String,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DecisionRule {
  /// Ordered list of input entries that compose this decision rule.
  pub input_entries: Vec<InputEntry>,
  /// Ordered list of output entries that compose this decision rule.
  pub output_entries: Vec<OutputEntry>,
  /// Ordered list of rule annotations that compose this decision rule.
  pub annotation_entries: Vec<AnnotationEntry>,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InputEntry {
  /// Text representation of unary test that composes this input entry.
  pub text: String,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OutputEntry {
  /// Text representation of literal expression that composes this output entry.
  pub text: String,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AnnotationEntry {
  /// Text representing this rule annotation.
  pub text: String,
}

/// [Dmndi] is a container for the shared [DmnStyle](DmnStyle)s
/// and all [DmnDiagram](DmnDiagram)s defined in [Definitions].
#[derive(Debug, Clone)]
pub struct Dmndi {
  /// A list of shared [DmnStyle] that can be referenced
  /// by all [DmnDiagram] and [DmnDiagramElement].
  pub styles: Vec<DmnStyle>,
  /// A list of [DmnDiagram].
  pub diagrams: Vec<DmnDiagram>,
}

/// Defines possible elements of [DmnDiagramElement].
#[derive(Debug, Clone)]
pub enum DmnDiagramElement {
  DmnShape(DmnShape),
  DmnEdge(DmnEdge),
}

/// [DmnDiagram] is the container of [DmnDiagramElement] ([DmnShape] (s) and [DmnEdge] (s)).
/// [DmnDiagram] cannot include other [DmnDiagrams](DmnDiagram).
#[derive(Debug, Clone, Default)]
pub struct DmnDiagram {
  /// [DmnDiagram] id.
  pub id: Option<String>,
  /// The name of the diagram. Default is empty [String].
  pub name: Option<String>,
  /// The documentation of the diagram. Default is empty [String].
  pub documentation: String,
  /// The resolution of the diagram expressed in user units per inch. Default is 300.
  pub resolution: f64,
  /// A list of [DmnDiagramElement] ([DmnShape] and [DmnEdge]) that are depicted in this diagram.
  pub diagram_elements: Vec<DmnDiagramElement>,
  /// A reference to a [DmnStyle] defined in the [Dmndi] that serves as the default styling
  /// of the [DmnDiagramElement] in this [DmnDiagram].
  pub shared_style: Option<String>,
  /// A [DmnStyle] that defines the default styling for this diagram.
  /// Properties defined in that style override the ones in the 'sharedStyle'.
  pub local_style: Option<DmnStyle>,
  /// The size of this diagram. If not specified, the [DmnDiagram] is unbounded.
  pub size: Option<DcDimension>,
}

/// [DmnShape] represents a [Decision], a [BusinessKnowledgeModel], an [InputData] element,
/// a [KnowledgeSource], a [DecisionService] or a [TextAnnotation] that is depicted on the diagram.
#[derive(Debug, Clone)]
pub struct DmnShape {
  /// Unique identifier of this [DmnShape].
  pub id: Option<String>,
  /// The [DcBounds] of the shape relative to the origin of its parent [DmnDiagram]. The [DcBounds] MUST be specified.
  pub bounds: DcBounds,
  /// A  reference  to  a  [Decision], a [BusinessKnowledgeModel], an [InputData] element,
  /// a [KnowledgeSource], a [DecisionService] or a [TextAnnotation] MUST be specified.
  pub dmn_element_ref: Option<String>,
  /// If the [DmnShape] depicts an [InputData] element then this attribute is used to determine
  /// if the [InputData] is listed on the [Decision] element (true) or drawn as separate notational elements in the DRD (false).
  pub is_listed_input_data: bool,
  /// If the [DmnShape] depicts a [DecisionService], this attribute references a [DmnDecisionServiceDividerLine] that defines,
  /// where the [DmnShape] is divided into two parts by a straight solid line.
  /// This can be the case when a [DmnShape] depicts a [DecisionService],
  /// where the set of output decisions is smaller than the set of encapsulated decisions.
  /// The start and end waypoints of the `decisionServiceDividerLine` **MUST** be on the border of the [DmnShape].
  pub decision_service_divider_line: Option<DmnDecisionServiceDividerLine>,
  /// If the [DmnShape] depicts a [DecisionService], this attribute indicates
  /// if it should be depicted expanded (`false`) or collapsed (`true`).
  /// Default is `false`.
  pub is_collapsed: bool,
  /// A reference to a [DmnStyle] defined in the [Dmndi].
  pub shared_style: Option<String>,
  /// A [DmnStyle] that defines the styling for this element.
  pub local_style: Option<DmnStyle>,
  /// An optional label when this [DmnElement] has a visible text label.
  pub label: Option<DmnLabel>,
}

/// Struct defines line inside [DecisionService].
#[derive(Debug, Clone)]
pub struct DmnDecisionServiceDividerLine {
  pub id: Option<String>,
  /// A list of points relative to the origin of its parent [DmnDiagram] that specifies
  /// the connected line segments of the edge. At least two (2) waypoint`s MUST be specified.
  /// Waypoint must be on the border of the [DmnShape].
  pub way_points: Vec<DcPoint>,
  /// A reference to a [DmnStyle] defined in the [Dmndi].
  pub shared_style: Option<String>,
  /// A [DmnStyle] that defines the styling for this element.
  pub local_style: Option<DmnStyle>,
}

#[derive(Debug, Clone)]
pub struct DmnEdge {
  pub id: Option<String>,
  /// A list of points relative to the origin of its parent [DmnDiagram] that specifies
  /// the connected line segments of the edge. At least two (2) waypoints MUST be specified.
  pub way_points: Vec<DcPoint>,
  /// A reference to a [InformationRequirement], [KnowledgeRequirement],
  /// [AuthorityRequirement] or an [Association], MUST be specified.
  pub dmn_element_ref: Option<String>,
  /// The actual [DmnDiagramElement] this [DmnEdge] is connecting from.
  /// MUST be specified when the [DmnEdge] has a source.
  pub source_element: Option<String>,
  /// The actual [DmnDiagramElement] this [DmnEdge] is connecting to.
  /// MUST be specified when the [DmnEdge] has a target.
  pub target_element: Option<String>,
  /// A reference to a [DmnStyle] defined in the [Dmndi].
  pub shared_style: Option<String>,
  /// A [DmnStyle] that defines the styling for this element.
  pub local_style: Option<DmnStyle>,
  /// An optional label when this [DmnElement] has a visible text label.
  pub label: Option<DmnLabel>,
}

//FIXME verify this struct
/// tdb
#[derive(Debug, Clone)]
pub struct Association {}

//FIXME verify this struct
/// tdb
#[derive(Debug, Clone)]
pub struct TextAnnotation {}

/// [DmnStyle] is used to keep some non-normative visual attributes such as color and font.
#[derive(Debug, Clone)]
pub struct DmnStyle {
  /// A unique identifier for this style so it can be referenced.
  /// Only styles defined in the [Dmndi] can be referenced by [DmnDiagramElement] and [DmnDiagram].
  pub id: String,
  /// The color use to fill the shape.Does not apply to [DmnEdge]. Default is `white`.
  pub fill_color: Option<DcColor>,
  /// The color use to draw the shape borders. Default is `black`.
  pub stroke_color: Option<DcColor>,
  /// The color use to draw the label. Default is `black`.
  pub font_color: Option<DcColor>,
  /// A comma-separated list of Font Name that can be used to display the text. Default is `Arial`.
  pub font_family: Option<String>,
  /// The size in points of the font to use to display the text. Default is `8` points.
  pub font_size: Option<f64>,
  /// If the text should be displayed in Italic. Default is `false`.
  pub font_italic: Option<bool>,
  /// If the text should be displayed in Bold. Default is `false`.
  pub font_bold: Option<bool>,
  /// If the text should be underlined. Default is `false`.
  pub font_underline: Option<bool>,
  /// If the text should be stroke through. Default is `false`.
  pub font_strike_through: Option<bool>,
  /// How text should be positioned horizontally within the Label bounds.
  /// Default depends of the [DmnDiagramElement] the label is attached to (see 13.5).
  pub label_horizontal_alignment: Option<DcAlignmentKind>,
  /// How  the  text  should  be  positioned  vertically  inside  the  Label  bounds.
  /// Default depends of the [DmnDiagramElement] the label is attached to (see 13.5).
  /// Start means `top` and end means `bottom`.
  pub label_vertical_alignment: Option<DcAlignmentKind>,
}

/// Struct represents the depiction of some textual information about a DMN element.
#[derive(Debug, Clone)]
pub struct DmnLabel {
  /// The bounds of the [DmnLabel]. When not specified, the label is positioned
  /// at its default position as determined in clause 13.5.
  pub bounds: Option<DcBounds>,
  /// An optional pretty printed text that MUST be displayed
  /// instead of the [DmnElement's](DmnElement) name if it is present.
  pub text: Option<String>,
  /// A reference to a [DmnStyle] defined in the [Dmndi].
  pub shared_style: Option<String>,
}

/// Defines RGB color.
#[derive(Debug, Copy, Clone)]
pub struct DcColor {
  pub red: u8,
  pub green: u8,
  pub blue: u8,
}

impl DcColor {
  pub fn white() -> Self {
    Self {
      red: 0xFF,
      green: 0xFF,
      blue: 0xFF,
    }
  }

  pub fn black() -> Self {
    Self { red: 0x0, green: 0x0, blue: 0x0 }
  }
}

/// Defines point.
#[derive(Debug, Copy, Clone)]
pub struct DcPoint {
  pub x: f64,
  pub y: f64,
}

/// Defines bounds.
#[derive(Debug, Copy, Clone)]
pub struct DcBounds {
  pub x: f64,
  pub y: f64,
  pub width: f64,
  pub height: f64,
}

/// Defines dimensions.
#[derive(Debug, Copy, Clone)]
pub struct DcDimension {
  pub width: f64,
  pub height: f64,
}

/// Defines the kind of element alignment.
#[derive(Debug, Copy, Clone)]
pub enum DcAlignmentKind {
  /// Left or top.
  Start,
  /// Right or bottom.
  End,
  /// Center or middle.
  Center,
}

/// Defines known colors.
#[derive(Debug, Copy, Clone)]
pub enum DcKnownColor {
  Aqua = 0x00FFFF,
  Black = 0x000000,
  Blue = 0x0000FF,
  Fuchsia = 0xFF00FF,
  Gray = 0x808080,
  Green = 0x008000,
  Lime = 0x00FF00,
  Maroon = 0x800000,
  Navy = 0x000080,
  Olive = 0x808000,
  Orange = 0xFFA500,
  Purple = 0x800080,
  Red = 0xFF0000,
  Silver = 0xC0C0C0,
  Teal = 0x008080,
  White = 0xFFFFFF,
  Yellow = 0xFFFF00,
}