1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//! # Key derivation functions
//!
//! [`Kdf`] implements libsodium's key derivation functions, based on the
//! Blake2b hash function.
//!
//! You should use [`Kdf`] when you want to:
//!
//! * create many subkeys from a main key, without having to risk leaking the
//!   main key
//! * ensure that if a subkey were to become compromised, one could not derive
//!   the main key
//!
//! # Rustaceous API example
//!
//! ```
//! use base64::encode;
//! use dryoc::kdf::*;
//!
//! // Randomly generate a main key and context, using the default stack-allocated
//! // types
//! let key = Kdf::gen_with_defaults();
//! let subkey_id = 0;
//!
//! let subkey = key.derive_subkey_to_vec(subkey_id).expect("derive failed");
//! println!("Subkey {}: {}", subkey_id, encode(&subkey));
//! ```
//!
//! ## Additional resources
//!
//! * See <https://doc.libsodium.org/key_derivation> for additional details on
//!   key derivation

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zeroize::Zeroize;

use crate::classic::crypto_kdf::crypto_kdf_derive_from_key;
use crate::constants::{CRYPTO_KDF_CONTEXTBYTES, CRYPTO_KDF_KEYBYTES};
use crate::error::Error;
use crate::types::*;

/// Stack-allocated key type alias for key derivation with [`Kdf`].
pub type Key = StackByteArray<CRYPTO_KDF_KEYBYTES>;
/// Stack-allocated context type alias for key derivation with [`Kdf`].
pub type Context = StackByteArray<CRYPTO_KDF_CONTEXTBYTES>;

#[cfg_attr(
    feature = "serde",
    derive(Zeroize, Clone, Debug, Serialize, Deserialize)
)]
#[cfg_attr(not(feature = "serde"), derive(Zeroize, Clone, Debug))]
/// Key derivation implementation based on Blake2b, compatible with libsodium's
/// `crypto_kdf_*` functions.
pub struct Kdf<Key: ByteArray<CRYPTO_KDF_KEYBYTES>, Context: ByteArray<CRYPTO_KDF_CONTEXTBYTES>> {
    main_key: Key,
    context: Context,
}

/// Stack-allocated type alias for [`Kdf`]. Provided for convenience.
pub type StackKdf = Kdf<Key, Context>;

#[cfg(any(feature = "nightly", all(doc, not(doctest))))]
#[cfg_attr(all(feature = "nightly", doc), doc(cfg(feature = "nightly")))]
pub mod protected {
    //! #  Protected memory type aliases for [`Kdf`]
    //!
    //! This mod provides re-exports of type aliases for protected memory usage
    //! with [`Kdf`]. These type aliases are provided for
    //! convenience.
    //!
    //! ## Example
    //!
    //! ```
    //! use base64::encode;
    //! use dryoc::kdf::protected::*;
    //! use dryoc::kdf::Kdf;
    //!
    //! // Randomly generate a main key and context, using locked memory
    //! let key: LockedKdf = Kdf::gen();
    //! let subkey_id = 0;
    //!
    //! let subkey: Locked<Key> = key.derive_subkey(subkey_id).expect("derive failed");
    //! println!("Subkey {}: {}", subkey_id, encode(&subkey));
    //! ```
    use super::*;
    pub use crate::protected::*;
    pub use crate::types::*;

    /// Heap-allocated, page-aligned key type alias for key derivation with
    /// [`Kdf`].
    pub type Key = HeapByteArray<CRYPTO_KDF_KEYBYTES>;
    /// Heap-allocated, page-aligned context type alias for key derivation with
    /// [`Kdf`].
    pub type Context = HeapByteArray<CRYPTO_KDF_CONTEXTBYTES>;

    /// Locked [`Kdf`], provided as a type alias for convenience.
    pub type LockedKdf = Kdf<Locked<Key>, Locked<Context>>;
}

impl<Key: NewByteArray<CRYPTO_KDF_KEYBYTES>, Context: NewByteArray<CRYPTO_KDF_CONTEXTBYTES>>
    Kdf<Key, Context>
{
    /// Randomly generates a new pair of main key and context.
    pub fn gen() -> Self {
        Self {
            main_key: Key::gen(),
            context: Context::gen(),
        }
    }
}

impl<Key: ByteArray<CRYPTO_KDF_KEYBYTES>, Context: ByteArray<CRYPTO_KDF_CONTEXTBYTES>>
    Kdf<Key, Context>
{
    /// Derives a subkey for `subkey_id`, returning it.
    pub fn derive_subkey<Subkey: NewByteArray<CRYPTO_KDF_KEYBYTES>>(
        &self,
        subkey_id: u64,
    ) -> Result<Subkey, Error> {
        let mut subkey = Subkey::new_byte_array();
        crypto_kdf_derive_from_key(
            subkey.as_mut_array(),
            subkey_id,
            self.context.as_array(),
            self.main_key.as_array(),
        )?;
        Ok(subkey)
    }

    /// Derives a subkey for `subkey_id`, returning it as a [`Vec`]. Provided
    /// for convenience.
    pub fn derive_subkey_to_vec(&self, subkey_id: u64) -> Result<Vec<u8>, Error> {
        self.derive_subkey(subkey_id)
    }

    /// Constructs a new instance from `key` and `context`, consuming them both.
    pub fn from_parts(main_key: Key, context: Context) -> Self {
        Self { main_key, context }
    }

    /// Moves the key and context out of this instance, returning them as a
    /// tuple.
    pub fn into_parts(self) -> (Key, Context) {
        (self.main_key, self.context)
    }
}

impl Kdf<Key, Context> {
    /// Randomly generates a new pair of main key and context.
    pub fn gen_with_defaults() -> Self {
        Self {
            main_key: Key::gen(),
            context: Context::gen(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_kdf() {
        let key = StackKdf::gen();

        let _subkey = key.derive_subkey_to_vec(0).expect("derive failed");
    }
}