1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use ndarray::{Array4, ArrayD, ArrayViewD, Ix4};
use nodes::Operation;

/// Implements convolution [Operation](trait.Operation.html) that supports striding and padding.
/// It takes two arguments, `kernel`, and `input`. The output shape depends on striding, padding,
/// and eventually dialation (not yet implemented).
/// * `input ~ (Batch * Height * Width * Channels_in)`.
/// * `kernel ~ (Kernel_height * Kernel_width * Channels_in * Channels_out)`.
#[derive(Debug, Serialize, Deserialize)]
pub struct Conv {
    _dialation: usize,
    stride: (usize, usize),
    padding: Padding,
}

/// Type of padding to use in a [Conv](nodes/struct.Conv.html) node . `No` padding means a non-strided
/// convolution will shrink by the dimensions of the kernel as pixels at the edge will not be the
/// center of a convolution. `Same` padding allows for convolution of edge pixels by assuming
/// the values beyond the images are equal to the edge. Other not implemented padding strategies
/// are "Zero" padding or "Reflection" padding.
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub enum Padding {
    Same,
    No,
}

impl Default for Conv {
    fn default() -> Self {
        Conv {
            _dialation: 1,
            stride: (1, 1),
            padding: Padding::Same,
        }
    }
}

struct ConvDims {
    i: usize,
    j: usize,
    di: usize,
    dj: usize,
}

impl Conv {
    pub fn new(padding: Padding, stride: usize) -> Self {
        Conv {
            _dialation: 1,
            stride: (stride, stride),
            padding,
        }
    }
    #[inline(always)]
    fn conv_point(&self, size: &ConvDims, idx: &ConvDims) -> Option<(usize, usize)> {
        // Returns the index of the point of the input image image multiplied by the Kernel
        // in the convolution.
        let kernel_offset_i = size.di >> 1;
        let kernel_offset_j = size.dj >> 1;

        match self.padding {
            Padding::Same => {
                // subtract kernel size / 2 to center kernel
                let ci = (idx.i * self.stride.0 + idx.di)
                    .saturating_sub(kernel_offset_i)
                    .min(size.i - 1);
                let cj = (idx.j * self.stride.1 + idx.dj)
                    .saturating_sub(kernel_offset_j)
                    .min(size.j - 1);
                Some((ci, cj))
            }
            Padding::No => {
                // No padding so next image is di (dj) rows (cols) smaller
                if kernel_offset_i <= idx.i && idx.i + size.di < size.i {
                    let ci = idx.i * self.stride.0 + idx.di - kernel_offset_i;
                    if kernel_offset_j <= idx.j && idx.j + size.dj < size.j {
                        let cj = idx.j * self.stride.1 + idx.dj - kernel_offset_j;
                        return Some((ci, cj));
                    }
                }
                None
            }
        }
    }
}

impl Operation for Conv {
    #[allow(clippy::deref_addrof)]
    fn eval(&self, inputs: &[ArrayViewD<f32>]) -> ArrayD<f32> {
        assert!(
            inputs.len() == 2,
            "Convolution operation takes two arguments"
        );
        let kernel = inputs[0].view().into_dimensionality::<Ix4>().unwrap();
        let image = inputs[1].view().into_dimensionality::<Ix4>().unwrap();

        // Attaching mut to n_i, n_j makes them variables that dont need to be mutable
        // but without it, they are references ==><==
        if let ([n_di, n_dj, n_c0, n_c1], [n_b, n_i, n_j, n_c0_]) = (kernel.shape(), image.shape())
        {
            assert_eq!(
                n_c0_, n_c0,
                "number of channels in image do not match kernel's"
            );
            // Striding shrinks image
            let (out_i, out_j) = match self.padding {
                Padding::Same => (n_i / self.stride.0, n_j / self.stride.1),
                Padding::No => ((n_i - n_di) / self.stride.0, (n_j - n_dj) / self.stride.1),
            };
            let size = ConvDims {
                i: *n_i,
                j: *n_j,
                di: *n_di,
                dj: *n_dj,
            };
            let mut output = Array4::zeros([*n_b, out_i, out_j, *n_c1]);

            for b in 0..*n_b {
                for i in 0..out_i {
                    for j in 0..out_j {
                        for di in 0..*n_di {
                            for dj in 0..*n_dj {
                                let idx = ConvDims { i, j, di, dj };
                                if let Some((ci, cj)) = self.conv_point(&size, &idx) {
                                    let ker = kernel.slice(s!(di, dj, .., ..));
                                    let img = image.slice(s!(b, ci, cj, ..));
                                    let mut out = output.slice_mut(s!(b, i, j, ..));
                                    out += &img.dot(&ker);
                                }
                            }
                        }
                    }
                }
            }
            output.into_dyn()
        } else {
            unreachable!()
        }
    }
    fn grad(&self, inputs: &[ArrayViewD<f32>], loss: ArrayViewD<f32>) -> Vec<ArrayD<f32>> {
        assert!(
            inputs.len() == 2,
            "Convolution operation takes two arguments"
        );
        let kernel = inputs[0].view().into_dimensionality::<Ix4>().unwrap();
        let image = inputs[1].view().into_dimensionality::<Ix4>().unwrap();
        let loss = loss.into_dimensionality::<Ix4>().unwrap();

        if let ([n_di, n_dj, n_c0, n_c1], [n_b, n_i, n_j, n_c0_]) = (kernel.shape(), image.shape())
        {
            assert_eq!(
                n_c0_, n_c0,
                "number of channels in image do not match kernel's"
            );
            let out_i = n_i / self.stride.0;
            let out_j = n_j / self.stride.1;

            let mut grad_kernel = Array4::zeros([*n_di, *n_dj, *n_c0, *n_c1]);
            let mut grad_image = Array4::zeros([*n_b, *n_i, *n_j, *n_c0]);

            let size = ConvDims {
                i: *n_i,
                j: *n_j,
                di: *n_di,
                dj: *n_dj,
            };
            // Benchmarks suggests that iproduct is in fact not zero cost (slower than this).
            // manually nrolling the loop or implementing blocking may increase performance...
            for b in 0..*n_b {
                for i in 0..out_i {
                    for j in 0..out_j {
                        for di in 0..*n_di {
                            for dj in 0..*n_dj {
                                let idx = ConvDims { i, j, di, dj };
                                if let Some((ci, cj)) = self.conv_point(&size, &idx) {
                                    // // OPTIMIZE Batch version is worse, I'm guessing due to cache
                                    // // inefficency because the stride for `b` is so large
                                    // let img = image.slice(s!(.., ci, cj, ..));
                                    // let los = loss.slice(s!(.., i, j, ..));
                                    // let ker = kernel.slice(s!(di, dj, .., ..));
                                    // let mut gker = grad_kernel.slice_mut(s!(di, dj, .., ..));
                                    // let mut gimg = grad_image.slice_mut(s!(.., ci, cj, ..));
                                    // gker += &img.t().dot(&los);
                                    // gimg += &los.dot(&ker.t());

                                    for c0 in 0..*n_c0 {
                                        let img = image[(b, ci, cj, c0)];
                                        let gi = &mut grad_image[(b, ci, cj, c0)];
                                        for c1 in 0..*n_c1 {
                                            let l = loss[(b, i, j, c1)];
                                            let k = kernel[(di, dj, c0, c1)];
                                            grad_kernel[(di, dj, c0, c1)] += l * img;
                                            *gi += l * k;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
            vec![grad_kernel.into_dyn(), grad_image.into_dyn()]
        } else {
            unreachable!()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::distributions::{Distribution, Uniform};
    use rand::thread_rng;
    use std::f32;
    use test::Bencher;
    use xavier_initialize;

    #[test]
    fn conv_point_same_padding() {
        let ker = Array4::zeros([3, 3, 1, 1]).into_dyn();
        let img = Array4::zeros([4, 4, 4, 1]).into_dyn();
        let c = Conv::new(Padding::Same, 1);
        c.eval(&[ker.view(), img.view()]);

        let size = ConvDims {
            i: 4,
            j: 4,
            di: 3,
            dj: 3,
        };

        assert_eq!(
            c.conv_point(
                &size,
                &ConvDims {
                    i: 0,
                    j: 0,
                    di: 0,
                    dj: 0
                }
            ),
            Some((0, 0)),
            "Top left going up and left"
        );
        assert_eq!(
            c.conv_point(
                &size,
                &ConvDims {
                    i: 0,
                    j: 3,
                    di: 2,
                    dj: 2
                }
            ),
            Some((1, 3)),
            "Top right going down and right"
        );
        assert_eq!(
            c.conv_point(
                &size,
                &ConvDims {
                    i: 2,
                    j: 2,
                    di: 1,
                    dj: 1
                }
            ),
            Some((2, 2)),
            "Center going center"
        );
        assert_eq!(
            c.conv_point(
                &size,
                &ConvDims {
                    i: 3,
                    j: 3,
                    di: 0,
                    dj: 0
                }
            ),
            Some((2, 2)),
            "Bottom right going up and left"
        );
        assert_eq!(
            c.conv_point(
                &size,
                &ConvDims {
                    i: 3,
                    j: 3,
                    di: 0,
                    dj: 2
                }
            ),
            Some((2, 3)),
            "Bottom right going down and left"
        );
    }

    // #[test] TODO test no_padding
    // fn conv_point_no_padding() {
    //     unimplemented!()
    // }

    fn stripe_detector_kernel(horizontal: bool) -> ArrayD<f32> {
        Array4::from_shape_fn([3, 3, 1, 1], move |(row, col, _, _)| {
            if (horizontal && row == 1) || (!horizontal && col == 1) {
                1.0 / 3.0
            } else {
                -1.0 / 6.0
            }
        })
        .into_dyn()
    }

    fn stripes(horizontal: bool) -> ArrayD<f32> {
        Array4::from_shape_fn(
            [1, 10, 10, 1],
            move |(_, row, col, _)| if horizontal { row % 2 } else { col % 2 } as f32,
        )
        .into_dyn()
    }

    #[test]
    fn stripe_detectors() {
        for (padding, det, st) in iproduct!(
            [Padding::Same, Padding::No].into_iter(),
            [true, false].into_iter(),
            [true, false].into_iter()
        ) {
            println!("{:?}", (*padding, *det, *st));
            let kernel = stripe_detector_kernel(*det);
            let stripes = stripes(*st);
            let conv = Conv::new(*padding, 1);
            let detections = conv.eval(&[kernel.view(), stripes.view()]);
            let detections = detections.slice(s!(0, .., .., 0));
            if *det != *st {
                assert!(
                    detections.iter().all(|x| x.abs() < f32::EPSILON),
                    "padding: {:?}; h_detector: {:?}; h_stripes: {:?}; detected orthogonal lines\n{:?}",
                    padding,
                    *det,
                    *st,
                    detections
                );
            } else {
                assert!(
                    detections.iter().any(|x| x.abs() != 0.0),
                    "padding: {:?}; h_detector: {:?}; h_stripes: {:?}; detected nothing\n{:?}",
                    padding,
                    *det,
                    *st,
                    detections
                );
            }
        }
    }

    #[test]
    fn identity_kernel_eval() {
        let identity_kernel = Array4::from_shape_fn([3, 3, 1, 1], |(di, dj, c0, c1)| {
            if di == 1 && dj == 1 && c0 == c1 {
                1.0
            } else {
                0.0
            }
        })
        .into_dyn();

        let img = stripes(true);
        let conv = Conv::new(Padding::Same, 1);
        let res = conv.eval(&[identity_kernel.view(), img.view()]);
        let conv = res.slice(s!(0, .., .., 0));
        let orig = img.slice(s!(0, .., .., 0));

        assert_eq!(orig, conv, "Identity Kernel failed\n");
    }

    #[test]
    fn identity_kernel_grad() {
        let identity_kernel = Array4::from_shape_fn([3, 3, 1, 1], |(di, dj, c0, c1)| {
            if di == 1 && dj == 1 && c0 == c1 {
                1.0
            } else {
                0.0
            }
        })
        .into_dyn();

        let orig = stripes(true);
        let conv = Conv::new(Padding::Same, 1);
        let eval = conv.eval(&[identity_kernel.view(), orig.view()]);
        let grad = conv.grad(&[identity_kernel.view(), orig.view()], eval.view());
        assert_eq!(grad.len(), 2);
        let g_img = grad[1].view();
        assert_eq!(g_img, orig.view(), "backwards identity");
    }

    #[test]
    fn minimize_from_positive_image() {
        let mut rng = thread_rng();
        let unif = Uniform::new(1.0, 2.0);
        let conv = Conv::new(Padding::Same, 1);
        let mut kernel = xavier_initialize(&[3, 3, 2, 2]);

        for _ in 0..5 {
            for _ in 0..3 {
                let img = Array4::from_shape_fn([4, 5, 5, 2], |_| unif.sample(&mut rng)).into_dyn();
                conv.eval(&[kernel.view(), img.view()]);
                let grad = conv.grad(&[kernel.view(), img.view()], img.view());
                let g_ker = grad[0].view();
                kernel = kernel - g_ker
            }
            assert!(
                kernel.iter().all(|x| *x < 0.0),
                "Kernel failed to learn to be all negative\n{:?}",
                kernel.view()
            )
        }
    }

    #[bench]
    fn eval_3x3x8_kernel_64x64x3_img(b: &mut Bencher) {
        let kernel = xavier_initialize(&[3, 3, 3, 8]);
        let conv = Conv::new(Padding::Same, 1);
        let img = xavier_initialize(&[1, 64, 64, 3]);

        b.iter(|| conv.eval(&[kernel.view(), img.view()]));
    }
    #[bench]
    fn grad_3x3x8_kernel_64x64x3_img(b: &mut Bencher) {
        let kernel = xavier_initialize(&[3, 3, 3, 8]);
        let conv = Conv::new(Padding::Same, 1);
        let img = xavier_initialize(&[1, 64, 64, 3]);
        let out = conv.eval(&[kernel.view(), img.view()]);

        b.iter(|| conv.grad(&[kernel.view(), img.view()], out.view()));
    }

}