1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
// Translated from C++ to Rust. The original C++ code can be found at
// https://github.com/jk-jeon/dragonbox and carries the following license:
//
// Copyright 2020-2021 Junekey Jeon
//
// The contents of this file may be used under the terms of
// the Apache License v2.0 with LLVM Exceptions.
//
//    (See accompanying file LICENSE-Apache or copy at
//     https://llvm.org/foundation/relicensing/LICENSE.txt)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

//! [![github]](https://github.com/dtolnay/dragonbox) [![crates-io]](https://crates.io/crates/dragonbox) [![docs-rs]](https://docs.rs/dragonbox)
//!
//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
//!
//! <br>
//!
//! This crate contains a basic port of <https://github.com/jk-jeon/dragonbox>
//! to Rust for benchmarking purposes.
//!
//! Please see the upstream repo for an explanation of the approach and
//! comparison to the Ryū algorithm.
//!
//! # Example
//!
//! ```
//! fn main() {
//!     let mut buffer = dragonbox::Buffer::new();
//!     let printed = buffer.format(1.234);
//!     assert_eq!(printed, "1.234E0");
//! }
//! ```
//!
//! ## Performance (lower is better)
//!
//! ![performance](https://raw.githubusercontent.com/dtolnay/dragonbox/master/performance.png)

#![no_std]
#![doc(html_root_url = "https://docs.rs/dragonbox/0.1.8")]
#![allow(unsafe_op_in_unsafe_fn)]
#![allow(
    clippy::bool_to_int_with_if,
    clippy::cast_lossless,
    clippy::cast_possible_truncation,
    clippy::cast_possible_wrap,
    clippy::cast_sign_loss,
    clippy::comparison_chain,
    clippy::doc_markdown,
    clippy::expl_impl_clone_on_copy,
    clippy::if_not_else,
    clippy::items_after_statements,
    clippy::manual_range_contains,
    clippy::must_use_candidate,
    clippy::needless_doctest_main,
    clippy::never_loop,
    clippy::ptr_as_ptr,
    clippy::shadow_unrelated,
    clippy::similar_names,
    clippy::too_many_lines,
    clippy::toplevel_ref_arg,
    clippy::unreadable_literal,
    clippy::unusual_byte_groupings
)]

mod buffer;
mod cache;
mod div;
mod log;
mod to_chars;
mod wuint;

use crate::buffer::Sealed;
use crate::cache::EntryTypeExt as _;
use core::mem::MaybeUninit;

/// Buffer correctly sized to hold the text representation of any floating point
/// value.
///
/// ## Example
///
/// ```
/// let mut buffer = dragonbox::Buffer::new();
/// let printed = buffer.format_finite(1.234);
/// assert_eq!(printed, "1.234E0");
/// ```
pub struct Buffer {
    bytes: [MaybeUninit<u8>; to_chars::MAX_OUTPUT_STRING_LENGTH],
}

/// A floating point number that can be written into a
/// [`dragonbox::Buffer`][Buffer].
///
/// This trait is sealed and cannot be implemented for types outside of the
/// `dragonbox` crate.
pub trait Float: Sealed {}

// IEEE754-binary64
const SIGNIFICAND_BITS: usize = 52;
const EXPONENT_BITS: usize = 11;
const MIN_EXPONENT: i32 = -1022;
const EXPONENT_BIAS: i32 = -1023;

// Defines an unsigned integer type that is large enough
// to carry a variable of type f64.
// Most of the operations will be done on this integer type.
type CarrierUint = u64;

// Defines a signed integer type for holding significand bits together with the
// sign bit.
type SignedSignificand = i64;

// Number of bits in the above unsigned integer type.
const CARRIER_BITS: usize = 64;

// Extract exponent bits from a bit pattern. The result must be aligned to the
// LSB so that there is no additional zero paddings on the right. This function
// does not do bias adjustment.
const fn extract_exponent_bits(u: CarrierUint) -> u32 {
    const EXPONENT_BITS_MASK: u32 = (1 << EXPONENT_BITS) - 1;
    (u >> SIGNIFICAND_BITS) as u32 & EXPONENT_BITS_MASK
}

// Remove the exponent bits and extract significand bits together with the sign
// bit.
const fn remove_exponent_bits(u: CarrierUint, exponent_bits: u32) -> SignedSignificand {
    (u ^ ((exponent_bits as CarrierUint) << SIGNIFICAND_BITS)) as SignedSignificand
}

// Shift the obtained signed significand bits to the left by 1 to remove the
// sign bit.
const fn remove_sign_bit_and_shift(s: SignedSignificand) -> CarrierUint {
    (s as CarrierUint) << 1
}

const fn is_nonzero(u: CarrierUint) -> bool {
    (u << 1) != 0
}

const fn is_negative(s: SignedSignificand) -> bool {
    s < 0
}

const fn has_even_significand_bits(s: SignedSignificand) -> bool {
    s % 2 == 0
}

const fn compute_power32<const K: u32>(a: u32) -> u32 {
    // assert!(k >= 0);
    let mut p = 1;
    let mut i = 0;
    while i < K {
        p *= a;
        i += 1;
    }
    p
}

const fn compute_power64<const K: u32>(a: u64) -> u64 {
    // assert!(k >= 0);
    let mut p = 1;
    let mut i = 0;
    while i < K {
        p *= a;
        i += 1;
    }
    p
}

const fn count_factors<const A: usize>(mut n: usize) -> u32 {
    // assert!(a > 1);
    let mut c = 0;
    while n % A == 0 {
        n /= A;
        c += 1;
    }
    c
}

fn break_rounding_tie(significand: &mut u64) {
    *significand = if *significand % 2 == 0 {
        *significand
    } else {
        *significand - 1
    };
}

// Compute floor(n / 10^N) for small N.
// Precondition: n <= 2^a * 5^b (a = max_pow2, b = max_pow5)
fn divide_by_pow10<const N: u32, const MAX_POW2: i32, const MAX_POW5: i32>(n: u64) -> u64 {
    // Ensure no overflow.
    assert!(MAX_POW2 + (log::floor_log2_pow10(MAX_POW5) - MAX_POW5) < 64);

    // Specialize for 64-bit division by 1000.
    // Ensure that the correctness condition is met.
    if N == 3
        && MAX_POW2 + (log::floor_log2_pow10(N as i32 + MAX_POW5) - (N as i32 + MAX_POW5)) < 70
    {
        wuint::umul128_upper64(n, 0x8312_6e97_8d4f_df3c) >> 9
    } else {
        struct Divisor<const N: u32>;
        impl<const N: u32> Divisor<N> {
            const VALUE: u64 = compute_power64::<N>(10);
        }
        n / Divisor::<N>::VALUE
    }
}

struct Decimal {
    significand: u64,
    exponent: i32,
}

const KAPPA: u32 = 2;

// The main algorithm assumes the input is a normal/subnormal finite number
fn compute_nearest_normal(
    two_fc: CarrierUint,
    exponent: i32,
    has_even_significand_bits: bool,
) -> Decimal {
    //////////////////////////////////////////////////////////////////////
    // Step 1: Schubfach multiplier calculation
    //////////////////////////////////////////////////////////////////////

    // Compute k and beta.
    let minus_k = log::floor_log10_pow2(exponent) - KAPPA as i32;
    let ref cache = unsafe { cache::get(-minus_k) };
    let beta_minus_1 = exponent + log::floor_log2_pow10(-minus_k);

    // Compute zi and deltai.
    // 10^kappa <= deltai < 10^(kappa + 1)
    let deltai = compute_delta(cache, beta_minus_1);
    let two_fr = two_fc | 1;
    let zi = compute_mul(two_fr << beta_minus_1, cache);

    //////////////////////////////////////////////////////////////////////
    // Step 2: Try larger divisor; remove trailing zeros if necessary
    //////////////////////////////////////////////////////////////////////

    const BIG_DIVISOR: u32 = compute_power32::<{ KAPPA + 1 }>(10);
    const SMALL_DIVISOR: u32 = compute_power32::<KAPPA>(10);

    // Using an upper bound on zi, we might be able to optimize the division
    // better than the compiler; we are computing zi / big_divisor here.
    let mut significand = divide_by_pow10::<
        { KAPPA + 1 },
        { SIGNIFICAND_BITS as i32 + KAPPA as i32 + 2 },
        { KAPPA as i32 + 1 },
    >(zi);
    let mut r = (zi - BIG_DIVISOR as u64 * significand) as u32;

    'small_divisor_case_label: loop {
        if r > deltai {
            break 'small_divisor_case_label;
        } else if r < deltai {
            // Exclude the right endpoint if necessary.
            if r == 0
                && !has_even_significand_bits
                && is_product_integer_fc_pm_half(two_fr, exponent, minus_k)
            {
                significand -= 1;
                r = BIG_DIVISOR;
                break 'small_divisor_case_label;
            }
        } else {
            // r == deltai; compare fractional parts.
            // Check conditions in the order different from the paper to take
            // advantage of short-circuiting.
            let two_fl = two_fc - 1;
            if (!has_even_significand_bits
                || !is_product_integer_fc_pm_half(two_fl, exponent, minus_k))
                && !compute_mul_parity(two_fl, cache, beta_minus_1)
            {
                break 'small_divisor_case_label;
            }
        }
        let exponent = minus_k + KAPPA as i32 + 1;

        return Decimal {
            significand,
            exponent,
        };
    }

    //////////////////////////////////////////////////////////////////////
    // Step 3: Find the significand with the smaller divisor
    //////////////////////////////////////////////////////////////////////

    significand *= 10;
    let exponent = minus_k + KAPPA as i32;

    let mut dist = r - (deltai / 2) + (SMALL_DIVISOR / 2);
    let approx_y_parity = ((dist ^ (SMALL_DIVISOR / 2)) & 1) != 0;

    // Is dist divisible by 10^kappa?
    let divisible_by_10_to_the_kappa = div::check_divisibility_and_divide_by_pow10(&mut dist);

    // Add dist / 10^kappa to the significand.
    significand += dist as CarrierUint;

    if divisible_by_10_to_the_kappa {
        // Check z^(f) >= epsilon^(f)
        // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
        // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
        // Since there are only 2 possibilities, we only need to care about the parity.
        // Also, zi and r should have the same parity since the divisor
        // is an even number.
        if compute_mul_parity(two_fc, cache, beta_minus_1) != approx_y_parity {
            significand -= 1;
        } else {
            // If z^(f) >= epsilon^(f), we might have a tie
            // when z^(f) == epsilon^(f), or equivalently, when y is an integer.
            // For tie-to-up case, we can just choose the upper one.
            if is_product_integer_fc(two_fc, exponent, minus_k) {
                break_rounding_tie(&mut significand);
            }
        }
    }

    Decimal {
        significand,
        exponent,
    }
}

fn compute_nearest_shorter(exponent: i32) -> Decimal {
    // Compute k and beta.
    let minus_k = log::floor_log10_pow2_minus_log10_4_over_3(exponent);
    let beta_minus_1 = exponent + log::floor_log2_pow10(-minus_k);

    // Compute xi and zi.
    let ref cache = unsafe { cache::get(-minus_k) };

    let mut xi = compute_left_endpoint_for_shorter_interval_case(cache, beta_minus_1);
    let zi = compute_right_endpoint_for_shorter_interval_case(cache, beta_minus_1);

    // If the left endpoint is not an integer, increase it.
    if !is_left_endpoint_integer_shorter_interval(exponent) {
        xi += 1;
    }

    // Try bigger divisor.
    let significand = zi / 10;

    // If succeed, remove trailing zeros if necessary and return.
    if significand * 10 >= xi {
        return Decimal {
            significand,
            exponent: minus_k + 1,
        };
    }

    // Otherwise, compute the round-up of y.
    let mut significand = compute_round_up_for_shorter_interval_case(cache, beta_minus_1);
    let exponent = minus_k;

    // When tie occurs, choose one of them according to the rule.
    const SHORTER_INTERVAL_TIE_LOWER_THRESHOLD: i32 =
        -log::floor_log5_pow2_minus_log5_3(SIGNIFICAND_BITS as i32 + 4)
            - 2
            - SIGNIFICAND_BITS as i32;
    const SHORTER_INTERVAL_TIE_UPPER_THRESHOLD: i32 =
        -log::floor_log5_pow2(SIGNIFICAND_BITS as i32 + 2) - 2 - SIGNIFICAND_BITS as i32;
    if exponent >= SHORTER_INTERVAL_TIE_LOWER_THRESHOLD
        && exponent <= SHORTER_INTERVAL_TIE_UPPER_THRESHOLD
    {
        break_rounding_tie(&mut significand);
    } else if significand < xi {
        significand += 1;
    }

    Decimal {
        significand,
        exponent,
    }
}

fn compute_mul(u: CarrierUint, cache: &cache::EntryType) -> CarrierUint {
    wuint::umul192_upper64(u, *cache)
}

fn compute_delta(cache: &cache::EntryType, beta_minus_1: i32) -> u32 {
    (cache.high() >> ((CARRIER_BITS - 1) as i32 - beta_minus_1)) as u32
}

fn compute_mul_parity(two_f: CarrierUint, cache: &cache::EntryType, beta_minus_1: i32) -> bool {
    debug_assert!(beta_minus_1 >= 1);
    debug_assert!(beta_minus_1 < 64);

    ((wuint::umul192_middle64(two_f, *cache) >> (64 - beta_minus_1)) & 1) != 0
}

fn compute_left_endpoint_for_shorter_interval_case(
    cache: &cache::EntryType,
    beta_minus_1: i32,
) -> CarrierUint {
    (cache.high() - (cache.high() >> (SIGNIFICAND_BITS + 2)))
        >> ((CARRIER_BITS - SIGNIFICAND_BITS - 1) as i32 - beta_minus_1)
}

fn compute_right_endpoint_for_shorter_interval_case(
    cache: &cache::EntryType,
    beta_minus_1: i32,
) -> CarrierUint {
    (cache.high() + (cache.high() >> (SIGNIFICAND_BITS + 2)))
        >> ((CARRIER_BITS - SIGNIFICAND_BITS - 1) as i32 - beta_minus_1)
}

fn compute_round_up_for_shorter_interval_case(
    cache: &cache::EntryType,
    beta_minus_1: i32,
) -> CarrierUint {
    ((cache.high() >> ((CARRIER_BITS - SIGNIFICAND_BITS - 2) as i32 - beta_minus_1)) + 1) / 2
}

const MAX_POWER_OF_FACTOR_OF_5: i32 = log::floor_log5_pow2(SIGNIFICAND_BITS as i32 + 2);
const DIVISIBILITY_CHECK_BY_5_THRESHOLD: i32 =
    log::floor_log2_pow10(MAX_POWER_OF_FACTOR_OF_5 + KAPPA as i32 + 1);

fn is_product_integer_fc_pm_half(two_f: CarrierUint, exponent: i32, minus_k: i32) -> bool {
    const CASE_FC_PM_HALF_LOWER_THRESHOLD: i32 =
        -(KAPPA as i32) - log::floor_log5_pow2(KAPPA as i32);
    const CASE_FC_PM_HALF_UPPER_THRESHOLD: i32 = log::floor_log2_pow10(KAPPA as i32 + 1);

    // Case I: f = fc +- 1/2
    if exponent < CASE_FC_PM_HALF_LOWER_THRESHOLD {
        false
    }
    // For k >= 0
    else if exponent <= CASE_FC_PM_HALF_UPPER_THRESHOLD {
        true
    }
    // For k < 0
    else if exponent > DIVISIBILITY_CHECK_BY_5_THRESHOLD {
        false
    } else {
        unsafe {
            div::divisible_by_power_of_5::<{ MAX_POWER_OF_FACTOR_OF_5 as usize + 1 }>(
                two_f,
                minus_k as u32,
            )
        }
    }
}

fn is_product_integer_fc(two_f: CarrierUint, exponent: i32, minus_k: i32) -> bool {
    const CASE_FC_LOWER_THRESHOLD: i32 =
        -(KAPPA as i32) - 1 - log::floor_log5_pow2(KAPPA as i32 + 1);
    const CASE_FC_UPPER_THRESHOLD: i32 = log::floor_log2_pow10(KAPPA as i32 + 1);

    // Case II: f = fc + 1
    // Case III: f = fc
    // Exponent for 5 is negative
    if exponent > DIVISIBILITY_CHECK_BY_5_THRESHOLD {
        false
    } else if exponent > CASE_FC_UPPER_THRESHOLD {
        unsafe {
            div::divisible_by_power_of_5::<{ MAX_POWER_OF_FACTOR_OF_5 as usize + 1 }>(
                two_f,
                minus_k as u32,
            )
        }
    }
    // Both exponents are nonnegative
    else if exponent >= CASE_FC_LOWER_THRESHOLD {
        true
    }
    // Exponent for 2 is negative
    else {
        div::divisible_by_power_of_2(two_f, (minus_k - exponent + 1) as u32)
    }
}

const fn floor_log2(mut n: u64) -> i32 {
    let mut count = -1;
    while n != 0 {
        count += 1;
        n >>= 1;
    }
    count
}

fn is_left_endpoint_integer_shorter_interval(exponent: i32) -> bool {
    const CASE_SHORTER_INTERVAL_LEFT_ENDPOINT_LOWER_THRESHOLD: i32 = 2;
    const CASE_SHORTER_INTERVAL_LEFT_ENDPOINT_UPPER_THRESHOLD: i32 = 2 + floor_log2(
        compute_power64::<{ count_factors::<5>((1 << (SIGNIFICAND_BITS + 2)) - 1) + 1 }>(10) / 3,
    );
    exponent >= CASE_SHORTER_INTERVAL_LEFT_ENDPOINT_LOWER_THRESHOLD
        && exponent <= CASE_SHORTER_INTERVAL_LEFT_ENDPOINT_UPPER_THRESHOLD
}

fn to_decimal(x: f64) -> Decimal {
    let br = x.to_bits();
    let exponent_bits = extract_exponent_bits(br);
    let signed_significand_bits = remove_exponent_bits(br, exponent_bits);

    let mut two_fc = remove_sign_bit_and_shift(signed_significand_bits);
    let mut exponent = exponent_bits as i32;

    // Is the input a normal number?
    if exponent != 0 {
        exponent += EXPONENT_BIAS - SIGNIFICAND_BITS as i32;

        // Shorter interval case; proceed like Schubfach. One might think this
        // condition is wrong, since when exponent_bits == 1 and two_fc == 0,
        // the interval is actullay regular. However, it turns out that this
        // seemingly wrong condition is actually fine, because the end result is
        // anyway the same.
        //
        // [binary32]
        // floor( (fc-1/2) * 2^e ) = 1.175'494'28... * 10^-38
        // floor( (fc-1/4) * 2^e ) = 1.175'494'31... * 10^-38
        // floor(    fc    * 2^e ) = 1.175'494'35... * 10^-38
        // floor( (fc+1/2) * 2^e ) = 1.175'494'42... * 10^-38
        //
        // Hence, shorter_interval_case will return 1.175'494'4 * 10^-38.
        // 1.175'494'3 * 10^-38 is also a correct shortest representation that
        // will be rejected if we assume shorter interval, but 1.175'494'4 *
        // 10^-38 is closer to the true value so it doesn't matter.
        //
        // [binary64]
        // floor( (fc-1/2) * 2^e ) = 2.225'073'858'507'201'13... * 10^-308
        // floor( (fc-1/4) * 2^e ) = 2.225'073'858'507'201'25... * 10^-308
        // floor(    fc    * 2^e ) = 2.225'073'858'507'201'38... * 10^-308
        // floor( (fc+1/2) * 2^e ) = 2.225'073'858'507'201'63... * 10^-308
        //
        // Hence, shorter_interval_case will return 2.225'073'858'507'201'4 * 10^-308.
        // This is indeed of the shortest length, and it is the unique one
        // closest to the true value among valid representations of the same
        // length.
        if two_fc == 0 {
            return compute_nearest_shorter(exponent);
        }

        two_fc |= 1 << (SIGNIFICAND_BITS + 1);
    }
    // Is the input a subnormal number?
    else {
        exponent = MIN_EXPONENT - SIGNIFICAND_BITS as i32;
    }

    compute_nearest_normal(
        two_fc,
        exponent,
        has_even_significand_bits(signed_significand_bits),
    )
}