1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use std::cmp::Ordering;

fn double_pivot_quicksort<T:Ord> (arr: &mut [T], left: usize, right: usize) {

	let len = right - left;
	if len < 27 {
		insertion_sort(arr, left, right);
		return;
	}

	unsafe {
		// pivots
		let pivot1 : *mut T = &mut arr[left];
		let pivot2 : *mut T = &mut arr[right];
		
		// swap pivots if p1 > p2
		if (&*pivot1).cmp(&*pivot2) == Ordering::Greater {
			arr.swap(left, right);
		}

		// partition indexes
		let mut less = left + 1;
		let mut greater = right - 1;

		// sorting
		let mut k = less;
		while k <= greater {
			match arr[k].cmp(&*pivot1) {
				Ordering::Less | Ordering::Equal => {
					arr.swap(k, less);
					less = less + 1;
				},
				_ => {
					if arr[k].cmp(&*pivot2) == Ordering::Greater || arr[k].cmp(&*pivot2) == Ordering::Equal {
						while k < greater && arr[greater].cmp(&*pivot2) == Ordering::Greater {
							greater = greater - 1;
						}
						arr.swap(k, greater);
						greater = greater - 1;

						if arr[k].cmp(&*pivot1) == Ordering::Less || arr[k].cmp(&*pivot1) == Ordering::Equal {
							arr.swap(k, less);
							less = less + 1;
						}
					}
				}
			}
			k = k + 1;
		}
		arr.swap(less - 1, left);
		arr.swap(greater + 1, right);

		
		if less > left + 2 {
			double_pivot_quicksort(arr, left, less - 2);
		}

		if greater + 2 < right {
			double_pivot_quicksort(arr, greater + 2, right);
		}

		if less < greater && (&*pivot1).cmp(&*pivot2) == Ordering::Less {
			double_pivot_quicksort(arr, less, greater);
		}
	}
}

/// An insertion sort for small slices
#[inline]
fn insertion_sort<T>(arr: &mut [T], left: usize, right: usize) where T: Ord {
	for i in (left + 1)..(right + 1) {
		let mut j = i;
		while j > left && arr[j].cmp(&arr[j - 1]) == Ordering::Less {
			arr.swap(j, j - 1);
			j = j - 1;
		}
	}
}

/// An in-place quicksort for ordered items.
#[inline]
pub fn quicksort<T>(arr: &mut [T]) where T: Ord {
    let len = arr.len();
    if len > 1 {
    	double_pivot_quicksort(arr, 0, len - 1);
    }
}



#[cfg(test)]
extern crate rand;

#[cfg(test)]
pub mod tests {
    use rand::{self, Rng};
    use super::quicksort;

    #[test]
    pub fn random() {
        let mut rng = rand::thread_rng();
        for _ in 0u32 .. 50000u32 {
            let len: usize = rng.gen();
            let mut v: Vec<isize> = rng.gen_iter::<isize>().take((len % 64) + 1).collect();
            quicksort(&mut v);
            for i in 0 .. v.len() - 1 {
                assert!(v[i] <= v[i + 1])
            }
        }
    }

	#[test]
	pub fn bench_quicksort1() {
		let mut rng = rand::thread_rng();
		let len: usize = 20000000;
	    let mut v: Vec<isize> = rng.gen_iter::<isize>().take(len).collect();
	    quicksort(&mut v);
	}

	#[test]
	pub fn bench_quicksort2() {
		let len: usize = 7000;
	    let mut v: Vec<usize> = (0..len).collect();
	    quicksort(&mut v);
	}

	#[test]
	pub fn bench_sort() {
		let mut rng = rand::thread_rng();
		let len: usize = 20000000;
	    let mut v: Vec<isize> = rng.gen_iter::<isize>().take(len).collect();
	    v.sort();
	}


	#[test]
	pub fn bench_sort2() {
		let len: usize = 7000;
	    let mut v: Vec<usize> = (0..len).collect();
	    vq.sort();
	}

}