1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use p256::PublicKey;
use crate::dh::DhKeyPair;
use alloc::vec::Vec;
use serde::{Serialize, Deserialize};
use crate::aead::encrypt;
use aes_gcm_siv::{Key, Nonce, Aes256GcmSiv};
use aes_gcm_siv::aead::{NewAead, AeadInPlace};

#[cfg(test)]
use crate::dh::gen_key_pair;
use alloc::string::{ToString, String};
use core::str::FromStr;
use zeroize::Zeroize;

#[derive(Debug, Clone)]
pub struct Header {
    pub public_key: PublicKey,
    pub pn: usize, // Previous Chain Length
    pub n: usize, // Message Number
}

#[derive(Serialize, Deserialize, Debug, Zeroize)]
#[zeroize(drop)]
struct ExHeader {
    #[serde(with = "serde_bytes")]
    ad: Vec<u8>,
    public_key: Vec<u8>,
    pn: usize,
    n: usize
}

// Message Header
impl Header {
    // #[doc(hidden)]
    pub fn new(dh_pair: &DhKeyPair, pn: usize, n: usize) -> Self {
        Header {
            public_key: dh_pair.public_key,
            pn,
            n,
        }
    }
    // #[doc(hidden)]
    pub fn concat(&self, ad: &[u8]) -> Vec<u8> {
        let ex_header = ExHeader {
            ad: ad.to_vec(),
            public_key: self.public_key.to_string().as_bytes().to_vec(),
            pn: self.pn,
            n: self.n
        };
        bincode::serialize(&ex_header).expect("Failed to serialize Header")
    }

    pub fn encrypt(&self, hk: &[u8; 32], ad: &[u8]) -> (Vec<u8>, [u8; 12]) {
        let header_data = self.concat(ad);
        encrypt(hk, &header_data, b"")
    }

    pub fn decrypt(hk: &Option<[u8; 32]>, ciphertext: &[u8], nonce: &[u8; 12]) -> Option<Self> {
        let key_d = match hk {
            None => {
                return None
            },
            Some(d) => d
        };
        let key = Key::from_slice(key_d);
        let cipher = Aes256GcmSiv::new(key);

        let nonce = Nonce::from_slice(nonce);
        let mut buffer = Vec::new();
        buffer.extend_from_slice(ciphertext);
        match cipher.decrypt_in_place(nonce, b"", &mut buffer) {
            Ok(_) => {}
            Err(_) => {
                return None
            }
        };
        Some(Header::from(buffer))
    }
    pub fn ex_public_key_bytes(&self) -> Vec<u8> {
        self.public_key.to_string().as_bytes().to_vec()
    }
}

impl From<Vec<u8>> for Header {
    fn from(d: Vec<u8>) -> Self {
        let ex_header: ExHeader = bincode::deserialize(&d).unwrap();
        let public_key_string = String::from_utf8(ex_header.public_key.clone()).unwrap();
        Header {
            public_key: PublicKey::from_str(&public_key_string).unwrap(),
            pn: ex_header.pn,
            n: ex_header.n,
        }
    }
}

impl From<&[u8]> for Header {
    fn from(d: &[u8]) -> Self {
        let ex_header: ExHeader = bincode::deserialize(d).unwrap();
        let public_key_string = String::from_utf8(ex_header.public_key.clone()).unwrap();
        Header {
            public_key: PublicKey::from_str(&public_key_string).unwrap(),
            pn: ex_header.pn,
            n: ex_header.n,
        }
    }
}

impl From<Header> for Vec<u8> {
    fn from(s: Header) -> Self {
        s.concat(b"")
    }
}

impl PartialEq for Header {
    fn eq(&self, other: &Self) -> bool {
        if self.public_key == other.public_key
            && self.pn == other.pn
            && self.n == other.n {
            return true
        }
        false
    }
}

#[cfg(test)]
pub fn gen_header() -> Header {
    let dh_pair = gen_key_pair();
    let pn = 10;
    let n = 50;
    Header::new(&dh_pair, pn, n)
}


#[cfg(test)]
mod tests {
    use crate::header::{gen_header, Header, ExHeader};
    use crate::kdf_chain::gen_mk;
    use crate::aead::{encrypt, decrypt};

    #[test]
    fn ser_des() {
        let ad = b"";
        let header = gen_header();
        let serialized = header.concat(ad);
        let created = Header::from(serialized.as_slice());
        assert_eq!(header, created)
    }

    #[test]
    fn enc_header() {
        let header = gen_header();
        let mk = gen_mk();
        let header_data = header.concat(b"");
        let data = include_bytes!("aead.rs");
        let (encrypted, nonce) = encrypt(&mk, data, &header_data);
        let decrypted = decrypt(&mk, &encrypted, &header_data, &nonce);
        assert_eq!(decrypted, data.to_vec())
    }

    #[test]
    fn test_eq_header() {
        let header1 = gen_header();
        let header2 = gen_header();
        assert_ne!(header1, header2)
    }

    #[test]
    fn debug_header() {
        let header = gen_header();
        let _string = alloc::format!("{:?}", header);
    }

    #[test]
    fn gen_ex_header() {
        let ex_header = ExHeader {
            ad: alloc::vec![0],
            public_key: alloc::vec![1],
            pn: 0,
            n: 0
        };
        let _string = alloc::format!("{:?}", ex_header);
    }

    #[test]
    fn dec_header() {
        let header = gen_header();
        let (encrypted, nonce) = header.encrypt(&[0; 32], &[0]);
        let decrypted = Header::decrypt(&Some([1_u8; 32]), &encrypted, &nonce);
        assert_eq!(None, decrypted)
    }
}