1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#![crate_name = "docopt_macros"]
#![crate_type = "dylib"]

#![feature(plugin_registrar, quote, rustc_private)]

//! This crate defines the `docopt!` macro. It is documented in the
//! documentation of the `docopt` crate.

extern crate syntax;
extern crate rustc_plugin;
extern crate docopt;

use std::borrow::Borrow;
use std::collections::HashMap;

use rustc_plugin::Registry;
use syntax::{ast, codemap, tokenstream};
use syntax::errors::DiagnosticBuilder;
use syntax::ext::base::{ExtCtxt, MacResult, MacEager, DummyResult};
use syntax::ext::build::AstBuilder;
use syntax::fold::Folder;
use syntax::parse::common::SeqSep;
use syntax::parse::parser::Parser;
use syntax::parse::token;
use syntax::print::pprust;
use syntax::ptr::P;
use syntax::symbol;
use syntax::util::small_vector::SmallVector;

use docopt::{Docopt, ArgvMap};
use docopt::parse::{Options, Atom, Positional, Zero, One};

type PResult<'a, T> = Result<T, DiagnosticBuilder<'a>>;

#[plugin_registrar]
pub fn plugin_registrar(reg: &mut Registry) {
    reg.register_macro("docopt", expand);
}

fn expand(cx: &mut ExtCtxt, span: codemap::Span, tts: &[tokenstream::TokenTree])
         -> Box<MacResult+'static> {
    let parsed = match MacParser::new(cx, tts).parse() {
        Ok(parsed) => parsed,
        Err(_) => return DummyResult::any(span),
    };
    parsed.items(cx)
}

/// Parsed corresponds to the result of parsing a `docopt` macro call.
/// It can be used to write a corresponding struct.
struct Parsed {
    struct_info: StructInfo,
    doc: Docopt,
    /// Overrided type annotations for struct members. May be empty.
    /// When a type annotation for an atom doesn't exist, then one is
    /// inferred automatically. It is one of: `bool`, `usize`, `String` or
    /// `Vec<String>`.
    types: HashMap<Atom, P<ast::Ty>>,
}

impl Parsed {
    /// Returns a macro result suitable for expansion.
    /// Contains two items: one for the struct and one for the struct impls.
    fn items(&self, cx: &ExtCtxt) -> Box<MacResult+'static> {
        let mut its = vec!();
        its.push(self.struct_decl(cx));

        let struct_name = self.struct_info.name;
        let full_doc = &*self.doc.parser().full_doc;
        its.push(quote_item!(cx,
            impl $struct_name {
                #[allow(dead_code)]
                fn docopt() -> docopt::Docopt {
                    // The unwrap is justified here because this code
                    // gen only happens if the Docopt usage string is valid.
                    docopt::Docopt::new($full_doc).unwrap()
                }
            }
        ).unwrap());
        MacEager::items(SmallVector::many(its))
    }

    /// Returns an item for the struct definition.
    fn struct_decl(&self, cx: &ExtCtxt) -> P<ast::Item> {
        let name = self.struct_info.name.clone();
        let vis = if self.struct_info.public { ast::Visibility::Public }
                  else { ast::Visibility::Inherited };
        let def = ast::VariantData::Struct(
            self.struct_fields(cx), ast::DUMMY_NODE_ID);

        let mut traits = vec!["Deserialize".to_string()];
        traits.extend(self.struct_info.deriving.iter().cloned());
        let attrs = vec![attribute(cx, "allow", vec!["non_snake_case"]),
                         attribute(cx, "derive", traits)];

        let st = cx.item_struct(codemap::DUMMY_SP, name.clone(), def);
        cx.item(codemap::DUMMY_SP, name, attrs, st.node.clone()).map(|mut it| {
            it.vis = vis;
            it
        })
    }

    /// Returns a list of fields for the struct definition.
    /// Handles type annotations.
    fn struct_fields(&self, cx: &ExtCtxt) -> Vec<ast::StructField> {
        let mut fields: Vec<ast::StructField> = vec!();
        for (atom, opts) in self.doc.parser().descs.iter() {
            let name = ArgvMap::key_to_struct_field(&*atom.to_string());
            let ty = match self.types.get(atom) {
                None => self.pat_type(cx, atom, opts),
                Some(ty) => ty.clone(),
            };
            fields.push(self.mk_struct_field(&*name, ty));
        }
        fields
    }

    /// Returns an inferred type for a usage pattern.
    /// This is only invoked when a type annotation is not present.
    fn pat_type(&self, cx: &ExtCtxt, atom: &Atom, opts: &Options) -> P<ast::Ty> {
        let sp = codemap::DUMMY_SP;
        match (opts.repeats, &opts.arg) {
            (false, &Zero) => {
                match atom {
                    &Positional(_) => cx.ty_ident(sp, ident("String")),
                    _ => cx.ty_ident(sp, ident("bool")),
                }
            }
            (true, &Zero) => {
                match atom {
                    &Positional(_) => ty_vec_string(cx),
                    _ => cx.ty_ident(sp, ident("usize")),
                }
            }
            (false, &One(_)) => cx.ty_ident(sp, ident("String")),
            (true, &One(_)) => ty_vec_string(cx),
        }
    }

    /// Creates a struct field from a member name and type.
    fn mk_struct_field(&self, name: &str, ty: P<ast::Ty>) -> ast::StructField {
        ast::StructField {
            span: codemap::DUMMY_SP,
            ident: Some(ident(name)),
            vis: ast::Visibility::Public,
            id: ast::DUMMY_NODE_ID,
            ty: ty,
            attrs: vec!(),
        }
    }
}

/// State for parsing a `docopt` macro invocation.
struct MacParser<'a, 'b:'a> {
    cx: &'a mut ExtCtxt<'b>,
    p: Parser<'b>,
}

impl<'a, 'b> MacParser<'a, 'b> {
    fn new(cx: &'a mut ExtCtxt<'b>, tts: &[tokenstream::TokenTree]) -> MacParser<'a, 'b> {
        let p = cx.new_parser_from_tts(tts);
        MacParser { cx: cx, p: p }
    }

    /// Main entry point for parsing arguments to `docopt` macro.
    /// First looks for an identifier for the struct name.
    /// Second, a string containing the docopt usage patterns.
    /// Third, an optional list of type annotations.
    fn parse(&mut self) -> PResult<'b, Parsed> {
        if self.p.token == token::Eof {
            let err = self.cx.struct_span_err(
                self.cx.call_site(), "macro expects arguments");
            return Err(err);
        }
        let struct_info = self.parse_struct_info()?;
        let docstr = self.parse_str()?;

        let mut types = HashMap::new();
        if !self.p.check(&token::Eof) {
            let sep = SeqSep {
                sep: Some(token::Comma),
                trailing_sep_allowed: true,
            };
            types = self.p.parse_seq_to_before_end(
                &token::Eof, sep, |p| MacParser::parse_type_annotation(p)
            ).into_iter()
             .map(|(ident, ty)| {
                  let field_name = ident.to_string();
                  let key = ArgvMap::struct_field_to_key(&*field_name);
                  (Atom::new(&*key), ty)
              })
             .collect::<HashMap<Atom, P<ast::Ty>>>();
            self.p.expect(&token::Eof)?;
        }

        // This config does not matter because we're only asking for the
        // usage patterns in the Docopt string. The configuration does not
        // affect the retrieval of usage patterns.
        let doc = match Docopt::new(docstr) {
            Ok(doc) => doc,
            Err(err) => {
                let err = self.cx.struct_span_err(
                    self.cx.call_site(),
                    &format!("Invalid Docopt usage: {}", err));
                return Err(err);
            }
        };
        Ok(Parsed {
            struct_info: struct_info,
            doc: doc,
            types: types,
        })
    }

    /// Parses a single string literal. On failure, an error is logged and
    /// unit is returned.
    fn parse_str(&mut self) -> PResult<'b, String> {
        fn lit_is_str(lit: &ast::Lit) -> bool {
            match lit.node {
                ast::LitKind::Str(_, _) => true,
                _ => false,
            }
        }
        fn lit_to_string(lit: &ast::Lit) -> String {
            match lit.node {
                ast::LitKind::Str(ref s, _) => s.to_string(),
                _ => panic!("BUG: expected string literal"),
            }
        }
        let exp = self.cx.expander().fold_expr(self.p.parse_expr().unwrap());
        let s = match exp.node {
            ast::ExprKind::Lit(ref lit) if lit_is_str(&**lit) => {
                lit_to_string(&**lit)
            }
            _ => {
                let err = format!("Expected string literal but got {}",
                                  pprust::expr_to_string(&*exp));
                let err = self.cx.struct_span_err(exp.span, &*err);
                return Err(err);
            }
        };
        self.p.bump();
        Ok(s)
    }

    /// Parses a type annotation in a `docopt` invocation of the form
    /// `ident: Ty`.
    /// Note that this is a static method as it is used as a HOF.
    fn parse_type_annotation(p: &mut Parser<'b>)
                             -> PResult<'b, (ast::Ident, P<ast::Ty>)> {
        let ident = p.parse_ident()?;
        p.expect(&token::Colon)?;
        let ty = p.parse_ty().unwrap();
        Ok((ident, ty))
    }

    /// Parses struct information, like visibility, name and deriving.
    fn parse_struct_info(&mut self) -> PResult<'b, StructInfo> {
        let public = self.p.eat_keyword(symbol::keywords::Pub);
        let mut info = StructInfo {
            name: self.p.parse_ident()?,
            public: public,
            deriving: vec![],
        };
        if self.p.eat(&token::Comma) { return Ok(info); }
        let deriving = self.p.parse_ident()?;
        if *deriving.name.as_str() != *"derive" {
            let err = format!("Expected 'derive' keyword but got '{}'",
                              deriving);
            let err = self.cx.struct_span_err(self.cx.call_site(), &*err);
            return Err(err);
        }
        while !self.p.eat(&token::Comma) {
            info.deriving.push(
                self.p.parse_ident()?.name.to_string());
        }
        Ok(info)
    }
}

struct StructInfo {
    name: ast::Ident,
    public: bool,
    deriving: Vec<String>,
}

// Convenience functions for building intermediate values.

fn ident(s: &str) -> ast::Ident {
    ast::Ident::with_empty_ctxt(symbol::Symbol::intern(s))
}

fn attribute<S, T>(cx: &ExtCtxt, name: S, items: Vec<T>) -> ast::Attribute
            where S: Borrow<str>, T: Borrow<str> {
    let sp = codemap::DUMMY_SP;
    let its = items.into_iter().map(|s| meta_item(cx, s.borrow())).collect();
    let mi = cx.meta_list(sp, intern(name.borrow()), its);
    cx.attribute(sp, mi)
}

fn meta_item(cx: &ExtCtxt, s: &str) -> codemap::Spanned<ast::NestedMetaItemKind> {
    codemap::Spanned {
        node: ast::NestedMetaItemKind::MetaItem(cx.meta_word(codemap::DUMMY_SP, intern(s))),
        span: cx.call_site(),
    }
}

fn intern(s: &str) -> symbol::Symbol {
    symbol::Symbol::intern(s)
}

fn ty_vec_string(cx: &ExtCtxt) -> P<ast::Ty> {
    let sp = codemap::DUMMY_SP;
    let tystr = ast::AngleBracketedParameterData {
        span: sp,
        lifetimes: vec![],
        types: vec![cx.ty_ident(sp, ident("String"))],
        bindings: vec![],
    };
    cx.ty_path(ast::Path {
        span: sp,
        segments: vec![ast::PathSegment {
            span: sp,
            identifier: ident("Vec"),
            parameters: Some(P(ast::PathParameters::AngleBracketed(tystr))),
        }]
    })
}