1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
use std::collections::HashMap;
use std::fmt;
type Index = usize;

enum LinkType {
    Spacer,
    Item,
    OptionElement,
}

#[derive(Clone)]
struct OptionElement {
    ulink: Index,
    dlink: Index,
    top: Index,
}

#[derive(Clone)]
struct Spacer {
    ulink: Index,
    dlink: Index,
}

#[derive(Clone)]
struct Item {
    ulink: Index,
    dlink: Index,
    rlink: Index,
    llink: Index,
    l: usize,
}

/// Implements the linked lists, which are structured in the following way
/// ```text
/// i0  ⟷  i1  ⟷  i2  ⟷  i3  ⟷  i4
///        ⥯      ⥯     ⥯     ⥯   s0
/// o1     ⦿      ⦿     ⥯     ⥯   s1
/// o2     ⥯      ⥯     ⦿     ⥯   s2
/// o3     ⥯      ⦿     ⥯     ⦿   s3
/// o4     ⦿      ⥯     ⥯     ⥯   s4
///        ⥯      ⥯     ⥯     ⥯
/// ```
/// where arrows denote links.
///
/// The spacers s0,..., also form a doubly circularly linked list.
///
/// i0 is the root node for the linked list of items i1,...,.i4
///
/// s0 is the root node for the spacers  which link vertically to each other
///
/// ⦿ denote the option elements which contain links up and down and also reference their "parent" item
///
/// We may set up and solve this problem with the following code
/// ```
///# use dlx_rs::solver::Solver;
/// // Create Solver with 4 items
/// let mut s = Solver::new(4);
/// // Add options
/// s.add_option("o1", &[1,2]);
/// s.add_option("o2", &[3]);
/// s.add_option("o3", &[2,4]);
/// s.add_option("o4", &[1]);
///
/// // Iterate through all solutions
/// assert_eq!(s.next().unwrap(), ["o2","o3","o4"]);
///
/// ```
#[derive(Clone)]
pub struct Solver {
    elements: Vec<Box<dyn Link>>,
    items: Index,
    options: HashMap<Index, Vec<Index>>,
    l: usize,
    sol_vec: Vec<Index>,
    yielding: bool,
    idx: Index,
    names: Vec<String>,
    spacer_ids: HashMap<Index, usize>,
    stage: Stage,
    optional: Index,
}

/// enum used to determine which stage of the algorithm we are in
///
/// This approach avoids recursive function calls which, in very large problems, can cause a stack overflow
#[derive(Clone)]
enum Stage {
    X2,
    X3,
    X5,
    X6,
    X8,
}

impl fmt::Display for Solver {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // First write columns
        let mut last_col = 1;
        let mut linked_items = HashMap::new();
        let mut col_num = 0;

        write!(f, " ").unwrap();
        // First print only the linked items, and find their column numbers
        let mut index = self.elements[0].r();
        while index != 0 {
            linked_items.insert(index, col_num);
            col_num += 1;
            write!(f, "{} ", index).unwrap();
            index = self.elements[index].r();
        }

        //        println!("Linked items: {:?}",linked_items);
        //        println!("Linked items: {:?}",linked_items.keys());

        for i in self.elements.iter().skip(1 + self.items) {
            match i.link_type() {
                LinkType::Item => {}
                LinkType::Spacer => {
                    writeln!(f).unwrap();
                    last_col = 0;
                }
                LinkType::OptionElement => {
                    if let Some(&cur_col) = linked_items.get(&i.top()) {
                        //    println!("Cur_col: {}, last col: {}", cur_col, last_col);
                        let del = 2 * (1 + cur_col - last_col);
                        //    println!("del: {}",del);
                        write!(f, "{:del$}", i.top()).unwrap();
                        last_col = cur_col + 1;
                    };
                }
            };
        }

        write!(f, "")
    }
}
trait Link {
    fn u(&self) -> Index;
    fn d(&self) -> Index;
    fn r(&self) -> Index;
    fn l(&self) -> Index;
    fn set_u(&mut self, u: Index);
    fn set_d(&mut self, d: Index);
    fn set_r(&mut self, u: Index);
    fn set_l(&mut self, d: Index);
    fn link_type(&self) -> LinkType;
    fn top(&self) -> Index;
    fn inc_l(&mut self);
    fn dec_l(&mut self);
    fn get_l(&self) -> usize;
    fn clone_dyn(&self) -> Box<dyn Link>;
}

impl Link for Spacer {
    fn clone_dyn(&self) -> Box<dyn Link> {
        Box::new(self.clone())
    }
    fn r(&self) -> Index {
        0
    }
    fn l(&self) -> Index {
        0
    }
    fn u(&self) -> Index {
        self.ulink
    }
    fn d(&self) -> Index {
        self.dlink
    }
    fn set_r(&mut self, _u: Index) {}
    fn set_l(&mut self, _u: Index) {}
    fn set_u(&mut self, u: Index) {
        self.ulink = u;
    }
    fn set_d(&mut self, d: Index) {
        self.dlink = d;
    }
    fn link_type(&self) -> LinkType {
        LinkType::Spacer
    }
    fn top(&self) -> Index {
        0
    }
    fn inc_l(&mut self) {}
    fn dec_l(&mut self) {}
    fn get_l(&self) -> usize {
        0
    }
}
impl Link for OptionElement {
    fn clone_dyn(&self) -> Box<dyn Link> {
        Box::new(self.clone())
    }
    fn set_r(&mut self, _u: Index) {}
    fn set_l(&mut self, _u: Index) {}
    fn r(&self) -> Index {
        0
    }
    fn l(&self) -> Index {
        0
    }
    fn d(&self) -> Index {
        self.dlink
    }
    fn u(&self) -> Index {
        self.ulink
    }
    fn set_u(&mut self, u: Index) {
        self.ulink = u;
    }
    fn set_d(&mut self, d: Index) {
        self.dlink = d;
    }
    fn link_type(&self) -> LinkType {
        LinkType::OptionElement
    }
    fn top(&self) -> Index {
        self.top
    }
    fn inc_l(&mut self) {}
    fn dec_l(&mut self) {}
    fn get_l(&self) -> usize {
        0
    }
}
impl Link for Item {
    fn clone_dyn(&self) -> Box<dyn Link> {
        Box::new(self.clone())
    }
    fn r(&self) -> Index {
        self.rlink
    }
    fn l(&self) -> Index {
        self.llink
    }
    fn d(&self) -> Index {
        self.dlink
    }
    fn u(&self) -> Index {
        self.ulink
    }
    fn set_u(&mut self, u: Index) {
        self.ulink = u;
    }
    fn set_d(&mut self, d: Index) {
        self.dlink = d;
    }
    fn set_r(&mut self, u: Index) {
        self.rlink = u
    }
    fn set_l(&mut self, u: Index) {
        self.llink = u
    }
    fn link_type(&self) -> LinkType {
        LinkType::Item
    }
    fn top(&self) -> Index {
        0
    }

    fn inc_l(&mut self) {
        self.l += 1;
    }
    fn dec_l(&mut self) {
        self.l -= 1;
    }
    fn get_l(&self) -> usize {
        self.l
    }
}

impl Solver {
    /// Returns a solver with `n` items, all of which must be covered exactly
    /// once
    pub fn new(n: Index) -> Self {
        Self::new_optional(n, 0)
    }

    /// Returns a solver with `n` mandatory items and `m` optional items to be covered
    /// This allows us to include items which may or may not be covered (but
    /// still may not be covered more than once)
    ///
    /// Example, where optional elements are after |
    /// ```text
    ///     i1  i2  i3  i4 | i5
    /// o1   1   0   1  0  |  0
    /// o2   0   1   0  1  |  0
    /// o3   1   0   0  0  |  1
    /// o4   0   0   1  0  |  0
    /// o5   0   0   1  0  |  1
    /// ```
    /// Here we can see taking \[o1,o2\] works, as does \[o2,o3,o4\], but *not*
    /// \[o2,o3,o5\], because then i4 would be double covered
    ///
    /// The code that does this is
    /// ```
    ///# use dlx_rs::solver::Solver;
    ///
    /// let mut s = Solver::new_optional(4,1);
    ///
    /// s.add_option("o1", &[1,3]);
    /// s.add_option("o2", &[2,4]);
    /// s.add_option("o3", &[1,5]);
    /// s.add_option("o4", &[3]);
    /// s.add_option("o5", &[3,5]);
    ///
    /// let s1 = s.next().unwrap();
    /// let s2 = s.next().unwrap();
    /// let s3 = s.next();
    /// assert_eq!(s1,["o2","o1"]);
    /// assert_eq!(s2,["o2","o3","o4"]);
    /// assert_eq!(s3,None);
    /// ```
    ///
    pub fn new_optional(mandatory: Index, opt: Index) -> Self {
        // optional stores the index where the optional parameters begin: this
        // is required for both checking completeness of solution (in step X2)
        // and also in choosing MRV (step X3)
        let optional = mandatory + 1;
        let n = mandatory + opt;
        // First add null at element 0 (allows us to traverse items list)
        let mut elements: Vec<Box<dyn Link>> = vec![Box::new(Item {
            ulink: 0,
            dlink: 0,
            rlink: 1,
            llink: n,
            l: 0,
        })];
        // Now add items
        for i in 1..=n {
            let rlink = match i {
                _ if i < n => i + 1,
                _ if i == n => 0,
                _ => panic!("Invalid index"),
            };
            elements.push(Box::new(Item {
                ulink: i,
                dlink: i,
                llink: i - 1,
                rlink,
                l: 0,
            }));
        }

        // Add first spacer
        let spacer_index = elements.len();
        assert_eq!(spacer_index, n + 1);
        let spacer = Spacer {
            ulink: spacer_index,
            dlink: spacer_index,
        };
        elements.push(Box::new(spacer));

        Solver {
            optional,
            elements,
            items: n,
            options: HashMap::new(),
            l: 0,
            sol_vec: vec![],
            names: vec![],
            spacer_ids: HashMap::new(),
            yielding: true,
            idx: 0,
            stage: Stage::X2,
        }
    }

    /// Adds an option which would cover items defined by `option`, and with name `name
    /// Specifically if our problems looks like
    ///
    /// ```text
    /// i0  ⟷  i1  ⟷  i2  ⟷  i3  ⟷  i4
    ///        ⥯      ⥯     ⥯     ⥯   s0
    /// o1     ⦿      ⦿     ⥯     ⥯   s1
    /// o2     ⥯      ⥯     ⦿     ⥯   s2
    /// o3     ⥯      ⦿     ⥯     ⦿   s3
    /// o4     ⦿      ⥯     ⥯     ⥯   s4
    ///        ⥯      ⥯     ⥯     ⥯
    /// ```
    /// then `add_option("o5", &[1,2])` would take it to
    /// ```text
    /// i0  ⟷  i1  ⟷  i2  ⟷  i3  ⟷  i4
    ///        ⥯      ⥯     ⥯     ⥯   s0
    /// o1     ⦿      ⦿     ⥯     ⥯   s1
    /// o2     ⥯      ⥯     ⦿     ⥯   s2
    /// o3     ⥯      ⦿     ⥯     ⦿   s3
    /// o4     ⦿      ⥯     ⥯     ⥯   s4
    /// o5     ⦿      ⦿     ⥯     ⥯   s5
    ///        ⥯      ⥯     ⥯     ⥯
    /// ```
    pub fn add_option(&mut self, name: &str, option: &[Index]) {
        // Increase max depth, come back to this later
        self.sol_vec.push(0);
        //        self.sol_vec.push(0);

        // Now add elements from the option

        for &item_id in option {
            let new_ulink = self.elements[item_id].u();
            let new_id = self.elements.len();
            self.elements[new_ulink].set_d(new_id);
            self.elements[item_id].set_u(new_id);
            self.elements[item_id].inc_l();
            let new_node = OptionElement {
                ulink: new_ulink,
                dlink: item_id,
                top: item_id,
            };

            self.elements.push(Box::new(new_node));
        }

        //Add spacer at the end
        //Create new spacer
        let spacer_index = self.elements.len();
        let root_spacer_index = self.items + 1;
        let bottom_spacer_index = self.elements[root_spacer_index].u();
        let new_spacer = Spacer {
            dlink: root_spacer_index,
            ulink: bottom_spacer_index,
        };
        self.elements.push(Box::new(new_spacer));
        // Patch old spacers
        //Old bottom dlink = new spacer
        self.elements[bottom_spacer_index].set_d(spacer_index);
        // Patch root ulink
        self.elements[root_spacer_index].set_u(spacer_index);

        // Add the entry to the hash table
        self.options.insert(spacer_index, option.to_vec());
        self.names.push(String::from(name));
        self.spacer_ids.insert(spacer_index, self.names.len() - 1);
    }

    /// Covers item in column `i`
    /// i.e. `cover(2)` would transform
    ///
    /// ```text
    /// i0  ⟷  i1  ⟷  i2  ⟷  i3  ⟷  i4
    ///        ⥯      ⥯     ⥯     ⥯   s0
    /// o1     ⦿      ⦿     ⥯     ⥯   s1
    /// o2     ⥯      ⥯     ⦿     ⥯   s2
    /// o3     ⥯      ⦿     ⥯     ⦿   s3
    /// o4     ⦿      ⥯     ⥯     ⥯   s4
    ///        ⥯      ⥯     ⥯     ⥯
    /// ```
    /// into
    ///
    /// ```text
    /// i0  ⟷  i1  ⟷  ⟷  ⟷  i3  ⟷  i4
    ///        ⥯            ⥯     ⥯   s0
    /// o1     ⦿            ⥯     ⥯   s1
    /// o2     ⥯            ⦿     ⥯   s2
    /// o3     ⥯            ⥯     ⦿   s3
    /// o4     ⦿            ⥯     ⥯   s4
    ///        ⥯            ⥯     ⥯
    /// ```
    pub fn cover(&mut self, i: Index) -> Result<(), &'static str> {
        let col = &mut self.elements[i];
        match col.link_type() {
            LinkType::Item => {}
            _ => return Err("Can only cover items"),
        };
        // Hide all of the options in col i
        let mut p = col.d();
        while p != i {
            self.hide(p)?;
            p = self.elements[p].d();
        }

        // Unlink item
        self.unlink_item(i);
        //let l = self.elements[i].l();
        //let r = self.elements[i].r();
        //self.elements[l].set_r(r);
        //self.elements[r].set_l(l);

        Ok(())
    }

    /// Unlinks an item from the horizontally linked list
    fn unlink_item(&mut self, i: Index) {
        let l = self.elements[i].l();
        let r = self.elements[i].r();
        self.elements[l].set_r(r);
        self.elements[r].set_l(l);
    }

    /// Relinks an item into the horizontally linked list
    ///
    /// Must be done in the reverse order to unlinking
    fn relink_item(&mut self, i: Index) {
        let l = self.elements[i].l();
        let r = self.elements[i].r();
        self.elements[l].set_r(i);
        self.elements[r].set_l(i);
    }

    /// When selecting an option, this runs through all of the items it covers
    /// and unlinks those OptionElements vertically
    fn hide(&mut self, p: Index) -> Result<(), &'static str> {
        let mut q = p + 1;
        while q != p {
            let x = self.elements[q].top();
            let u = self.elements[q].u();
            let d = self.elements[q].d();

            match self.elements[q].link_type() {
                LinkType::Item => return Err("Hide encountered and item"),
                LinkType::Spacer => q = u,
                LinkType::OptionElement => {
                    self.elements[u].set_d(d);
                    self.elements[d].set_u(u);
                    self.elements[x].dec_l();
                }
            };
            q += 1;
        }

        Ok(())
    }

    /// Reverse of function [cover](crate::solver::Solver::cover)
    pub fn uncover(&mut self, i: Index) -> Result<(), &'static str> {
        // Relink item
        self.relink_item(i);
        //let l = self.elements[i].l();
        //let r = self.elements[i].r();
        //self.elements[l].set_r(i);
        //self.elements[r].set_l(i);

        let col = &mut self.elements[i];

        match col.link_type() {
            LinkType::Item => {}
            _ => return Err("Can only uncover items"),
        };

        // Hide all of the options in col i
        let mut p = col.u();
        while p != i {
            self.unhide(p)?;
            p = self.elements[p].u();
        }

        Ok(())
    }

    /// Reverse of function [hide](crate::solver::Solver::hide)
    fn unhide(&mut self, p: Index) -> Result<(), &'static str> {
        let mut q = p - 1;
        while q != p {
            let x = self.elements[q].top();
            let u = self.elements[q].u();
            let d = self.elements[q].d();

            match self.elements[q].link_type() {
                LinkType::Item => return Err("Hide encountered and item"),
                LinkType::Spacer => q = d,
                LinkType::OptionElement => {
                    self.elements[u].set_d(q);
                    self.elements[d].set_u(q);
                    self.elements[x].inc_l();
                }
            };
            q -= 1;
        }

        Ok(())
    }

    /// Implements algorithm X as a finite state machine
    #[allow(dead_code)]
    pub fn solve(&mut self) -> Option<Vec<String>> {
        // Follows stages of algorithm description in Fasc 5c, Knuth

        // The only ways to break this loop are to yield a solution via X2 or to
        // have exhausted all solutions via X8
        loop {
            match self.stage {
                Stage::X2 => match self.x2() {
                    Some(z) => return Some(z),
                    None => {}
                },
                Stage::X3 => {
                    self.x3x4();
                }
                Stage::X5 => {
                    self.x5();
                }
                Stage::X6 => {
                    self.x6();
                }
                Stage::X8 => match self.x8() {
                    true => {}
                    false => {
                        return None;
                    }
                },
            };
        }
    }

    /// Returns a solution in a human-understandable form
    ///
    /// The solution vector `sol_vec` stores each of the OptionElements which
    /// were used to cover the items in the solution.  To turn this into
    /// something understandable we find the spacer to its right, and use this
    /// with a lookup table created earlier to map this to the names of options
    ///
    // TODO: Is it useful to have the double map? We don't used spacer_ids for
    //       anything else, so could condense it into a single HashMap
    pub fn output(&self) -> Vec<String> {
        let to_return = self
            .sol_vec
            .iter()
            .take(self.l)
            .map(|&x| self.spacer_for(x))
            .map(|x| self.spacer_ids[&x])
            .map(|x| self.names[x].clone())
            .collect();
        to_return
    }

    /// Stage X2 of Algorithm X
    /// If rlink(0) = 0, then all items are covered, so return current solution
    /// and also go to X8
    fn x2(&mut self) -> Option<Vec<String>> {
        //println!("State:");
        //println!("{}",self);
        //println!("RLINK: {}",self.elements[0].r());
        if self.elements[0].r() == 0 || self.elements[0].r() >= self.optional {
            if self.yielding {
                self.yielding = false;
                return Some(self.output());
            } else {
                self.yielding = true;
                self.stage = Stage::X8;
                return None;
            }
        }
        self.stage = Stage::X3;
        None
    }

    /// Stages X3 and X4 of algorithm X
    ///
    /// X3: Choose item `min_idx`, use MRV heuristic (i.e. smallest remaining value)
    ///
    /// X4: Cover item `min_idx`
    fn x3x4(&mut self) -> Option<Vec<String>> {
        // X3
        // Heuristic we choose is MRV

        // Walk along items and find minimum l
        let mut idx = self.elements[0].r();
        let mut min_idx = self.elements[0].r();
        let mut min_l = self.elements[idx].get_l();
        while idx != 0 && idx < self.optional {
            let l = self.elements[idx].get_l();
            if l < min_l {
                min_l = l;
                min_idx = idx;
            }
            idx = self.elements[idx].r();
        }

        // Now select the item which is covered by the minimum number of options
        self.idx = min_idx;

        // X4
        // Cover i

        //println!("Covering item X4: {}", self.idx);
        self.cover(self.idx).unwrap();

        // Set x_l <- DLINK(i)
        let x_l = self.elements[self.idx].d();

        // Save x_l in current guesses
        //     println!("self.l: {}",self.l);
        self.sol_vec[self.l] = x_l;

        self.stage = Stage::X5;
        None
    }

    /// Stages X5 and X7 of Algorithm X
    ///
    /// Try x_l
    ///
    /// If x_l = i, then we are out of options and execute X7: backtrack
    ///
    /// Otherwise, cover all other items in option x_l, increase level and go back to X2
    ///
    fn x5(&mut self) -> Option<Vec<String>> {
        // X5
        // Try x_l
        // If x_l = i, then we are out of options and go to X7
        // Otherwise, cover all other items in option x_l, increase level and go back to X2
        //        println!("Partial sol: {:?}", &self.sol_vec[..self.l]);

        // Try xl
        let x_l = self.sol_vec[self.l];
        //        println!("Trying x_{}= {}", self.l, x_l);
        //        println!("idx: {}", self.idx);

        // If out of options (x_l reads downwards from self.idx, so have looped back around), backtrack
        if x_l == self.idx {
            // X7
            // Backtrack: Uncover item (i)

            //            println!("Uncovering X7: {}", x_l);
            self.uncover(x_l).unwrap();
            self.stage = Stage::X8;
            return None;
        }

        let mut p = x_l + 1;
        while p != x_l {
            //            println!("p: {}", p);
            let jt = self.elements[p].link_type();

            let j = self.elements[p].top();

            match jt {
                LinkType::Spacer => {
                    // If a spacer, then hop up one link
                    p = self.elements[p].u();
                }
                LinkType::OptionElement => {
                    //                    println!("Covering X5: {}", j);
                    //                    println!("State:");
                    //                    println!("{}", self);

                    self.cover(j).unwrap();
                }
                LinkType::Item => {
                    panic!("Trying an item {}", j);
                }
            };
            p += 1;
        }
        //        println!("--");

        self.l += 1;
        self.stage = Stage::X2;
        None
    }

    /// Stage X6 of Algorithm X
    ///
    /// Try again
    ///
    /// Uncover items != i in option x_l, then set x_l = DLINK(x_l): this is how we move through all of the options
    fn x6(&mut self) -> Option<Vec<String>> {
        let x_l = self.sol_vec[self.l];
        let mut p = x_l - 1;

        while p != x_l {
            let j = self.elements[p].top();
            if j == 0 {
                p = self.elements[p].d();
            } else {
                //                println!("Uncovering X6: {}",j);
                self.uncover(j).unwrap();
            }
            p -= 1;
        }
        self.idx = self.elements[x_l].top();
        self.sol_vec[self.l] = self.elements[x_l].d();

        self.stage = Stage::X5;
        None
    }

    /// Stage X8 of Algorithm X
    /// Leave level l
    /// Terminate if l=0, otherwise l=l-1, go to X6
    fn x8(&mut self) -> bool {
        // X8
        match self.l {
            0 => false,
            _ => {
                self.l -= 1;
                self.stage = Stage::X6;
                true
            }
        }
    }

    /// Takes in a non-item node and steps rightwards along `self.elements` the
    /// until a spacer is found, upon which the index is returned
    fn spacer_for(&self, x: Index) -> Index {
        let mut p = x;
        loop {
            match self.elements[p].link_type() {
                LinkType::Spacer => return p,
                LinkType::OptionElement => p += 1,
                LinkType::Item => panic!("Somehow ended up on an item"),
            };
        }
    }

    /// Selects an option with the name `name` When setting up a general
    /// constraint solution, this is how to search for specific answers e.g. a
    /// Sudoku has all the constraints (items and options), and then the squares
    /// filled out in the specific problem need to be selected
    ///
    /// So for the problem
    ///
    /// ```text
    ///    i1  i2  i3
    /// o1  1   0   0
    /// o2  1   0   0
    /// o3  0   1   1
    /// ```
    /// Clearly *both* \[o1,o3\] and \[o2,o3\] are solutions, but if we select o1, then only one solution remains
    ///
    /// ```
    ///# use dlx_rs::solver::Solver;
    ///
    /// let mut s = Solver::new(3);
    ///
    /// s.add_option("o1",&[1]);
    /// s.add_option("o2",&[1]);
    /// s.add_option("o3",&[2,3]);
    ///
    /// // First get all solutions
    /// let sols: Vec<Vec<String>> = s.clone().collect();
    /// assert_eq!( sols.len(), 2);
    /// assert_eq!( vec!["o3", "o1"], sols[0]);
    /// assert_eq!( vec!["o3", "o2"], sols[1]);
    ///
    ///
    /// // Now select o1 and get all solutions
    /// s.select("o1");
    /// assert_eq!( vec!["o3"], s.next().unwrap());
    /// ```
    pub fn select(&mut self, name: &str) -> Result<(), &'static str> {
        // This selects an option by doing the followings

        // First get the spacer position of the option by firstly finding which
        // option it was
        let id = match self
            .names
            .clone()
            .iter()
            .position(|x| x == &name.to_string())
        {
            Some(z) => z,
            None => return Err("Invalid option specified"),
        };
        /*
        let mut id =0;
        for (i,item) in self.names.iter().enumerate() {
            if *item == name.to_string() {
                id = i;
                break;
            }
        }
        */
        // Now find the spacer id by going this many links down the chain
        // Start at root spacer node
        let mut spacer_id = self.items + 1;
        for _ in 0..id {
            spacer_id = self.elements[spacer_id].d();
        }
        //        println!("Spacer id: {}", spacer_id);

        // Now have the spacer node: cycle around and hide everything until we are at the next spacer mode
        let mut p = spacer_id + 1;

        loop {
            match self.elements[p].link_type() {
                LinkType::OptionElement => {
                    self.cover(self.elements[p].top()).unwrap();
                    p += 1;
                }
                LinkType::Spacer => break,
                LinkType::Item => break,
            };
        }

        Ok(())
    }
}

impl Iterator for Solver {
    type Item = Vec<String>;
    /// Produces next solution by following algorithm X
    /// as described in tAoCP in Fasc 5c, Dancing Links, Knuth
    ///
    /// Returns `Some` containing a vector of items if a solution remains, or
    /// `None` when no more solutions remaining
    fn next(&mut self) -> Option<Self::Item> {
        self.solve()
    }
}

impl Clone for Box<dyn Link> {
    fn clone(&self) -> Self {
        self.clone_dyn()
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn spacer_for() {
        let mut s = Solver::new(4);
        s.add_option("o1", &[1, 2]);
        s.add_option("o2", &[2, 3]);
        s.add_option("o3", &[3, 4]);
        s.add_option("o4", &[1, 4]);

        // This creates a vec which looks like
        // [i0, i1, i2, i3, i4, s0
        //      x    x          s1
        //           x   x      s2
        //               x   x  s3
        //      x            x  s4]
        //

        let spacer_answers = HashMap::from([
            (6, 8),
            (7, 8),
            (8, 8),
            (9, 11),
            (10, 11),
            (11, 11),
            (12, 14),
            (13, 14),
            (14, 14),
            (15, 17),
            (16, 17),
            (17, 17),
        ]);

        for i in 6..=17 {
            assert_eq!(s.spacer_for(i), spacer_answers[&i]);
        }
    }
}