1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use super::Reconnectable;
use std::io;
use std::time::Duration;
use strum::Display;
use tokio::sync::watch;
use tokio::task::JoinHandle;

/// Represents a watcher over a [`ConnectionState`].
#[derive(Clone)]
pub struct ConnectionWatcher(pub(super) watch::Receiver<ConnectionState>);

impl ConnectionWatcher {
    /// Returns next [`ConnectionState`] after a change is detected, or `None` if no more changes
    /// will be detected.
    pub async fn next(&mut self) -> Option<ConnectionState> {
        self.0.changed().await.ok()?;
        Some(self.last())
    }

    /// Returns true if the connection state has changed.
    pub fn has_changed(&self) -> bool {
        self.0.has_changed().ok().unwrap_or(false)
    }

    /// Returns the last [`ConnectionState`] observed.
    pub fn last(&self) -> ConnectionState {
        *self.0.borrow()
    }

    /// Spawns a new task that continually monitors for connection state changes and invokes the
    /// function `f` whenever a new change is detected.
    pub fn on_change<F>(&self, mut f: F) -> JoinHandle<()>
    where
        F: FnMut(ConnectionState) + Send + 'static,
    {
        let rx = self.0.clone();
        tokio::spawn(async move {
            let mut watcher = Self(rx);
            while let Some(state) = watcher.next().await {
                f(state);
            }
        })
    }
}

/// Represents the state of a connection.
#[derive(Copy, Clone, Debug, Display, PartialEq, Eq)]
#[strum(serialize_all = "snake_case")]
pub enum ConnectionState {
    /// Connection is not active, but currently going through reconnection process.
    Reconnecting,

    /// Connection is active.
    Connected,

    /// Connection is not active.
    Disconnected,
}

impl ConnectionState {
    /// Returns true if reconnecting.
    pub fn is_reconnecting(&self) -> bool {
        matches!(self, Self::Reconnecting)
    }

    /// Returns true if connected.
    pub fn is_connected(&self) -> bool {
        matches!(self, Self::Connected)
    }

    /// Returns true if disconnected.
    pub fn is_disconnected(&self) -> bool {
        matches!(self, Self::Disconnected)
    }
}

/// Represents the strategy to apply when attempting to reconnect the client to the server.
#[derive(Clone, Debug)]
pub enum ReconnectStrategy {
    /// A retry strategy that will fail immediately if a reconnect is attempted.
    Fail,

    /// A retry strategy driven by exponential back-off.
    ExponentialBackoff {
        /// Represents the initial time to wait between reconnect attempts.
        base: Duration,

        /// Factor to use when modifying the retry time, used as a multiplier.
        factor: f64,

        /// Represents the maximum duration to wait between attempts. None indicates no limit.
        max_duration: Option<Duration>,

        /// Represents the maximum attempts to retry before failing. None indicates no limit.
        max_retries: Option<usize>,

        /// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
        timeout: Option<Duration>,
    },

    /// A retry strategy driven by the fibonacci series.
    FibonacciBackoff {
        /// Represents the initial time to wait between reconnect attempts.
        base: Duration,

        /// Represents the maximum duration to wait between attempts. None indicates no limit.
        max_duration: Option<Duration>,

        /// Represents the maximum attempts to retry before failing. None indicates no limit.
        max_retries: Option<usize>,

        /// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
        timeout: Option<Duration>,
    },

    /// A retry strategy driven by a fixed interval.
    FixedInterval {
        /// Represents the time between reconnect attempts.
        interval: Duration,

        /// Represents the maximum attempts to retry before failing. None indicates no limit.
        max_retries: Option<usize>,

        /// Represents the maximum time to wait for a reconnect attempt. None indicates no limit.
        timeout: Option<Duration>,
    },
}

impl Default for ReconnectStrategy {
    /// Creates a reconnect strategy that will immediately fail.
    fn default() -> Self {
        Self::Fail
    }
}

impl ReconnectStrategy {
    pub async fn reconnect<T: Reconnectable>(&mut self, reconnectable: &mut T) -> io::Result<()> {
        // If our strategy is to immediately fail, do so
        if self.is_fail() {
            return Err(io::Error::from(io::ErrorKind::ConnectionAborted));
        }

        // Keep track of last sleep length for use in adjustment
        let mut previous_sleep = None;
        let mut current_sleep = self.initial_sleep_duration();

        // Keep track of remaining retries
        let mut retries_remaining = self.max_retries();

        // Get timeout if strategy will employ one
        let timeout = self.timeout();

        // Get maximum allowed duration between attempts
        let max_duration = self.max_duration();

        // Continue trying to reconnect while we have more tries remaining, otherwise
        // we will return the last error encountered
        let mut result = Ok(());

        while retries_remaining.is_none() || retries_remaining > Some(0) {
            // Perform reconnect attempt
            result = match timeout {
                Some(timeout) => {
                    match tokio::time::timeout(timeout, reconnectable.reconnect()).await {
                        Ok(x) => x,
                        Err(x) => Err(x.into()),
                    }
                }
                None => reconnectable.reconnect().await,
            };

            // If reconnect was successful, we're done and we can exit
            if result.is_ok() {
                return Ok(());
            }

            // Decrement remaining retries if we have a limit
            if let Some(remaining) = retries_remaining.as_mut() {
                if *remaining > 0 {
                    *remaining -= 1;
                }
            }

            // Sleep before making next attempt
            tokio::time::sleep(current_sleep).await;

            // Update our sleep duration
            let next_sleep = self.adjust_sleep(previous_sleep, current_sleep);
            previous_sleep = Some(current_sleep);
            current_sleep = if let Some(duration) = max_duration {
                std::cmp::min(next_sleep, duration)
            } else {
                next_sleep
            };
        }

        result
    }

    /// Returns true if this strategy is the fail variant.
    pub fn is_fail(&self) -> bool {
        matches!(self, Self::Fail)
    }

    /// Returns true if this strategy is the exponential backoff variant.
    pub fn is_exponential_backoff(&self) -> bool {
        matches!(self, Self::ExponentialBackoff { .. })
    }

    /// Returns true if this strategy is the fibonacci backoff variant.
    pub fn is_fibonacci_backoff(&self) -> bool {
        matches!(self, Self::FibonacciBackoff { .. })
    }

    /// Returns true if this strategy is the fixed interval variant.
    pub fn is_fixed_interval(&self) -> bool {
        matches!(self, Self::FixedInterval { .. })
    }

    /// Returns the maximum duration between reconnect attempts, or None if there is no limit.
    pub fn max_duration(&self) -> Option<Duration> {
        match self {
            ReconnectStrategy::Fail => None,
            ReconnectStrategy::ExponentialBackoff { max_duration, .. } => *max_duration,
            ReconnectStrategy::FibonacciBackoff { max_duration, .. } => *max_duration,
            ReconnectStrategy::FixedInterval { .. } => None,
        }
    }

    /// Returns the maximum reconnect attempts the strategy will perform, or None if will attempt
    /// forever.
    pub fn max_retries(&self) -> Option<usize> {
        match self {
            ReconnectStrategy::Fail => None,
            ReconnectStrategy::ExponentialBackoff { max_retries, .. } => *max_retries,
            ReconnectStrategy::FibonacciBackoff { max_retries, .. } => *max_retries,
            ReconnectStrategy::FixedInterval { max_retries, .. } => *max_retries,
        }
    }

    /// Returns the timeout per reconnect attempt that is associated with the strategy.
    pub fn timeout(&self) -> Option<Duration> {
        match self {
            ReconnectStrategy::Fail => None,
            ReconnectStrategy::ExponentialBackoff { timeout, .. } => *timeout,
            ReconnectStrategy::FibonacciBackoff { timeout, .. } => *timeout,
            ReconnectStrategy::FixedInterval { timeout, .. } => *timeout,
        }
    }

    /// Returns the initial duration to sleep.
    fn initial_sleep_duration(&self) -> Duration {
        match self {
            ReconnectStrategy::Fail => Duration::new(0, 0),
            ReconnectStrategy::ExponentialBackoff { base, .. } => *base,
            ReconnectStrategy::FibonacciBackoff { base, .. } => *base,
            ReconnectStrategy::FixedInterval { interval, .. } => *interval,
        }
    }

    /// Adjusts next sleep duration based on the strategy.
    fn adjust_sleep(&self, prev: Option<Duration>, curr: Duration) -> Duration {
        match self {
            ReconnectStrategy::Fail => Duration::new(0, 0),
            ReconnectStrategy::ExponentialBackoff { factor, .. } => {
                let next_millis = (curr.as_millis() as f64) * factor;
                Duration::from_millis(if next_millis > (std::u64::MAX as f64) {
                    std::u64::MAX
                } else {
                    next_millis as u64
                })
            }
            ReconnectStrategy::FibonacciBackoff { .. } => {
                let prev = prev.unwrap_or_else(|| Duration::new(0, 0));
                prev.checked_add(curr).unwrap_or(Duration::MAX)
            }
            ReconnectStrategy::FixedInterval { .. } => curr,
        }
    }
}