1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#![deny(missing_docs)]
//! A thread-safe, on-disk vector for Copy types.
extern crate memmap;
extern crate parking_lot;

use std::{io, mem, ptr};
use std::ops::{Deref, DerefMut};
use std::marker::PhantomData;
use std::cell::UnsafeCell;
use std::path::PathBuf;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::fs::File;

use memmap::{Mmap, Protection};
use parking_lot::{Mutex, MutexGuard};

/// A trait restricting what kind of types can be put in the DiskVec
///
/// Apart from being `Copy`, the structure also assumes that a zero-valued
/// instance of this type represents an empty slot in the memory mapped regions.
pub trait Volatile
where
    Self: Copy + PartialEq,
{
    /// A representation of this type used as a placeholder.
    /// Has to be represented by zeroes only.
    const ZEROED: Self;
}

const RANKS: usize = 128;
const LOCKS: usize = 1024;

/// A concurrent on-disk vector for storing and manipulating `Volatile` types
/// # Limitations
/// * A value read from the diskarray might have been corrupted by faulty
///   writes. For this reason, it is recommended that `T` carries its own
///   checksum capability.
/// * Write locks are done with a finite amount of mutexes, that may be less
///   than the amount of elements in the vector, so deadlocks are possible even
///   if you try to obtain mutable references to two different index positions.
/// * Since reads are lock-free, there is no guarantee that the value you're
///   holding a reference to will not change behind your back.
///
/// # Guarantees
/// * Writes are done using locks, so no writes will trample each other.
pub struct DiskVec<T: Volatile> {
    ranks: [UnsafeCell<Option<Mmap>>; RANKS],
    initialized: AtomicUsize,
    rank_writelock: Mutex<()>,
    writelocks: [Mutex<()>; LOCKS],
    path: PathBuf,
    len: AtomicUsize,
    _marker: PhantomData<T>,
}

unsafe impl<T: Volatile> Sync for DiskVec<T> {}
unsafe impl<T: Volatile> Send for DiskVec<T> {}

fn min_max(rank: usize) -> (usize, usize) {
    if rank == 0 {
        (0, 0)
    } else {
        (2usize.pow(rank as u32) - 1, 2usize.pow(rank as u32 + 1) - 2)
    }
}

fn rank_ofs(index: usize) -> (usize, usize) {
    let index = index + 1;
    let rank = mem::size_of::<usize>() * 8 - index.leading_zeros() as usize - 1;
    (rank, index - 2usize.pow(rank as u32))
}

/// A mutable reference into the DiskVec, carrying a guard
pub struct MutableReference<'a, T>
where
    T: 'a,
{
    reference: &'a mut T,
    _guard: MutexGuard<'a, ()>,
}

impl<'a, T> Deref for MutableReference<'a, T>
where
    T: 'a,
{
    type Target = T;
    fn deref(&self) -> &Self::Target {
        self.reference
    }
}

impl<'a, T> DerefMut for MutableReference<'a, T>
where
    T: 'a,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.reference
    }
}


impl<T: Volatile> DiskVec<T> {
    /// Construct a new `DiskVec` given a path.
    pub fn new<P: Into<PathBuf>>(path: P) -> io::Result<Self> {
        unsafe {
            let path = path.into();
            #[cfg(not(release))]
            {
                let z: T = mem::zeroed();
                assert!(z == T::ZEROED, "Invalid Volatile implementation");
            }

            let mut ranks: [UnsafeCell<Option<Mmap>>; RANKS] =
                mem::uninitialized();
            for i in 0..RANKS {
                ptr::write(&mut ranks[i], UnsafeCell::new(None))
            }

            let mut writelocks: [Mutex<()>; LOCKS] = mem::uninitialized();
            for i in 0..LOCKS {
                ptr::write(&mut writelocks[i], Mutex::new(()))
            }

            let mut n_ranks = 0;
            for rank in 0..RANKS {
                let mut rank_path = path.clone();
                rank_path.push(format!("{}", rank));
                if rank_path.exists() {
                    n_ranks += 1;
                    let mmap =
                        Mmap::open_path(&rank_path, Protection::ReadWrite)?;
                    *ranks[rank].get() = Some(mmap);
                } else {
                    break;
                }
            }

            let mut len = 0;
            if n_ranks > 0 {
                let (mut min, mut max) = min_max(n_ranks - 1);
                loop {
                    let probe = min + (max - min) / 2;
                    let (rank, ofs) = rank_ofs(probe);

                    let ptr: *const T = mem::transmute(
                        (*ranks[rank].get())
                            .as_ref()
                            .expect("accessing uninitialized rank")
                            .ptr(),
                    );
                    let ptr = ptr.offset(ofs as isize);
                    if *ptr != T::ZEROED {
                        // found something
                        if min == max {
                            len = min + 1;
                            break;
                        }
                        min = probe + 1;
                    } else {
                        if min == max {
                            len = min;
                            break;
                        }
                        max = probe;
                    }
                }
            }

            Ok(DiskVec {
                ranks,
                writelocks,
                len: AtomicUsize::new(len),
                initialized: AtomicUsize::new(n_ranks),
                rank_writelock: Mutex::new(()),
                path: path.into(),
                _marker: PhantomData,
            })
        }
    }

    /// Get a reference to the value at index
    pub fn get(&self, idx: usize) -> Option<&T> {
        let (rank, ofs) = rank_ofs(idx);
        if rank < self.initialized.load(Ordering::Relaxed) {
            unsafe {
                let ptr: *const T = mem::transmute(
                    (*self.ranks[rank].get())
                        .as_ref()
                        .expect("accessing uninitialized rank")
                        .ptr(),
                );
                let ptr = ptr.offset(ofs as isize);
                if *ptr == T::ZEROED {
                    None
                } else {
                    Some(mem::transmute(ptr))
                }
            }
        } else {
            None
        }
    }

    /// Get a mutable reference to the value at index
    pub fn get_mut(&self, idx: usize) -> Option<MutableReference<T>> {
        let (rank, ofs) = rank_ofs(idx);
        if rank < self.initialized.load(Ordering::Relaxed) {
            unsafe {
                let ptr: *mut T = mem::transmute(
                    (*self.ranks[rank].get())
                        .as_ref()
                        .expect("accessing uninitialized rank")
                        .ptr(),
                );
                let ptr = ptr.offset(ofs as isize);
                if *ptr == T::ZEROED {
                    None
                } else {
                    Some(MutableReference {
                        reference: mem::transmute(ptr),
                        _guard: self.writelocks[idx % LOCKS].lock(),
                    })
                }
            }
        } else {
            None
        }
    }

    /// returns the length of the `DiskVec`
    pub fn len(&self) -> usize {
        self.len.load(Ordering::Relaxed)
    }

    /// Pushes an element to the `DiskVec`, returning the new index.
    pub fn push(&self, t: T) -> io::Result<usize> {
        #[cfg(not(release))]
        assert!(t != T::ZEROED, "Cannot insert zeroes!");

        let idx = self.len.fetch_add(1, Ordering::Relaxed);
        let (rank, ofs) = rank_ofs(idx);

        if rank >= self.initialized.load(Ordering::Relaxed) {
            let _rank_writelock = self.rank_writelock.lock();
            // is the rank still too small after aquiring the lock?
            if rank >= self.initialized.load(Ordering::Relaxed) {
                let mut path = self.path.clone();
                path.push(format!("{:?}", rank));
                let file = File::create(&path)?;
                let n_elements = 2usize.pow(rank as u32);
                let size = mem::size_of::<T>() * n_elements;
                file.set_len(size as u64)?;
                let mmap = Mmap::open_path(&path, Protection::ReadWrite)?;
                unsafe { *self.ranks[rank].get() = Some(mmap) }
                self.initialized.fetch_add(1, Ordering::Relaxed);
            }
        }

        unsafe {
            let ptr: *const T = mem::transmute(
                (*self.ranks[rank].get())
                    .as_ref()
                    .expect("accessing uninitialized rank")
                    .ptr(),
            );
            let ptr: *const T = ptr.offset(ofs as isize);
            let ptr: &mut T = mem::transmute(ptr);
            ptr::write(ptr, t);
            Ok(idx)
        }
    }
}

#[cfg(test)]
mod test {
    extern crate tempdir;
    use super::*;
    use self::tempdir::TempDir;
    use self::std::sync::Arc;
    use self::std::thread;
    const N: usize = 1_000_000;

    #[repr(C)]
    #[derive(Clone, Copy, Debug, PartialEq)]
    struct CheckSummedUsize {
        val: usize,
        checksum: usize,
    }

    impl CheckSummedUsize {
        fn new(val: usize) -> Self {
            CheckSummedUsize {
                val,
                checksum: val + 1,
            }
        }
    }

    impl Volatile for CheckSummedUsize {
        const ZEROED: Self = CheckSummedUsize {
            val: 0,
            checksum: 0,
        };
    }

    #[test]
    fn simple_diskarray() {
        let tempdir = TempDir::new("diskarray").unwrap();
        let array = DiskVec::new(tempdir.path()).unwrap();

        for i in 0..N {
            assert_eq!(array.push(CheckSummedUsize::new(i)).unwrap(), i);
        }

        for i in 0..N {
            assert_eq!(array.get(i).unwrap(), &CheckSummedUsize::new(i))
        }

        assert_eq!(array.get(N), None)
    }

    #[test]
    fn diskarray_restore() {
        let tempdir = TempDir::new("diskarray").unwrap();

        {
            let array = DiskVec::new(tempdir.path()).unwrap();

            for i in 0..N {
                assert_eq!(array.push(CheckSummedUsize::new(i)).unwrap(), i);
            }
        }

        {
            let array =
                DiskVec::<CheckSummedUsize>::new(tempdir.path()).unwrap();

            for i in 0..N {
                assert_eq!(array.get(i).unwrap(), &CheckSummedUsize::new(i))
            }
        }
    }

    #[test]
    fn diskarray_len() {
        for little_n in 0..100 {
            let tempdir = TempDir::new("diskarray").unwrap();
            {
                let array = DiskVec::new(tempdir.path()).unwrap();

                for i in 0..little_n {
                    assert_eq!(
                        array.push(CheckSummedUsize::new(i)).unwrap(),
                        i
                    );
                }
            }

            {
                let array =
                    DiskVec::<CheckSummedUsize>::new(tempdir.path()).unwrap();

                assert_eq!(array.len(), little_n);
            }
        }
    }

    #[test]
    fn stress() {
        let tempdir = TempDir::new("diskarray").unwrap();

        let array = Arc::new(DiskVec::new(tempdir.path()).unwrap());

        let n_threads = 16;
        let mut handles = vec![];

        for thread in 0..n_threads {
            let array = array.clone();
            handles.push(thread::spawn(move || for i in 0..N {
                if i % n_threads == thread {
                    array.push(CheckSummedUsize::new(i)).unwrap();
                }
            }));
        }

        for handle in handles {
            handle.join().unwrap();
        }

        assert_eq!(array.len(), N);
    }

    #[test]
    fn mutable_access() {
        let tempdir = TempDir::new("diskarray").unwrap();
        let array = Arc::new(DiskVec::new(tempdir.path()).unwrap());

        for i in 0..N {
            assert_eq!(array.push(CheckSummedUsize::new(i)).unwrap(), i);
        }

        let n_threads = 16;
        let mut handles = vec![];

        for _ in 0..n_threads {
            let array = array.clone();
            handles.push(thread::spawn(move || for i in 0..N {
                let mut old = array.get_mut(i).unwrap();
                *old = CheckSummedUsize {
                    val: old.val + 1,
                    checksum: old.checksum + 1,
                }
            }));
        }

        for handle in handles {
            handle.join().unwrap();
        }

        for i in 0..N {
            assert_eq!(
                array.get(i).unwrap(),
                &CheckSummedUsize::new(i + n_threads)
            )
        }
    }

    #[test]
    fn mapping() {
        let mappings: Vec<_> = (0..7).map(rank_ofs).collect();
        assert_eq!(
            mappings,
            vec![(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (2, 3)]
        );
    }

    #[test]
    fn min_max_index() {
        let mappings: Vec<_> = (0..5).map(min_max).collect();
        assert_eq!(mappings, vec![(0, 0), (1, 2), (3, 6), (7, 14), (15, 30)]);
    }
}