1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use std::marker::PhantomData;

use Construct;
use Data;
use Count;
use Of;
use ToIndex;
use ToPos;
use Zero;

/// Dimension is natural number, position is (a, b).
/// Represents all directional pairs that has not same element for `a` and `b`.
pub struct NeqPair<T = Data>(PhantomData<T>);

impl<T> Construct for NeqPair<T> {
    fn new() -> NeqPair<T> { NeqPair(PhantomData) }
}

impl Count<usize> for NeqPair<Data> {
    fn count(&self, dim: &usize) -> usize { dim * (dim - 1) }
}

impl<T, U> Count<U> for NeqPair<Of<T>>
    where
        T: Construct + Count<U>
{
    fn count(&self, dim: &U) -> usize {
        let of: T = Construct::new();
        let data: NeqPair<Data> = Construct::new();
        data.count(&of.count(dim))
    }
}

impl Zero<usize, (usize, usize)> for NeqPair<Data> {
    fn zero(&self, _dim: &usize) -> (usize, usize) { (0, 0) }
}

impl<T, U, V>
Zero<U, (V, V)> for NeqPair<Of<T>>
    where
        T: Construct + Zero<U, V>
{
    fn zero(&self, dim: &U) -> (V, V) {
        let of: T = Construct::new();
        (of.zero(dim), of.zero(dim))
    }
}

impl ToIndex<usize, (usize, usize)>
for NeqPair<Data> {
    fn to_index(&self, dim: &usize, &(a, b): &(usize, usize)) -> usize {
        use Pair;

        let pair: Pair<Data> = Construct::new();
        if a < b {
            pair.to_index(dim, &(a, b)) * 2
        } else {
            pair.to_index(dim, &(b, a)) * 2 + 1
        }
    }
}

impl<T, U, V>
ToIndex<U, (V, V)> for NeqPair<Of<T>>
    where
        T: Construct + ToIndex<U, V> + Count<U>
{
    fn to_index(
        &self,
        dim: &U,
        &(ref min, ref max): &(V, V)
    ) -> usize {
        let of: T = Construct::new();
        let data: NeqPair<Data> = Construct::new();
        let min = of.to_index(dim, min);
        let max = of.to_index(dim, max);
        data.to_index(&self.count(dim), &(min, max))
    }
}

impl ToPos<usize, (usize, usize)> for NeqPair<Data> {
    fn to_pos(&self, dim: &usize, index: usize, pos: &mut (usize, usize)) {
        use Pair;

        let pair: Pair<Data> = Construct::new();
        if index % 2 == 0 {
            pair.to_pos(dim, index / 2, pos);
        } else {
            pair.to_pos(dim, (index - 1) / 2, pos);
            let tmp = pos.1;
            pos.1 = pos.0;
            pos.0 = tmp;
        }
    }
}

impl<T, U, V>
ToPos<U, (V, V)> for NeqPair<Of<T>>
    where
        T: Construct + Count<U> + ToPos<U, V>
{
    fn to_pos(
        &self,
        dim: &U,
        index: usize,
        &mut (ref mut min, ref mut max): &mut (V, V)
    ) {
        let of: T = Construct::new();
        let data: NeqPair<Data> = Construct::new();
        let count = self.count(dim);
        let mut pair = (0, 0);
        data.to_pos(&count, index, &mut pair);
        let (pair_min, pair_max) = pair;
        of.to_pos(dim, pair_min, min);
        of.to_pos(dim, pair_max, max);
    }
}

#[cfg(test)]
mod tests {
    use super::super::*;

    #[test]
    fn features() {
        is_complete::<NeqPair, usize, (usize, usize)>();
        is_complete::<NeqPair<Of<NeqPair>>, usize,
            ((usize, usize), (usize, usize))>();
    }

    #[test]
    fn data() {
        let x: NeqPair = Construct::new();
        let ref dim = 4;
        assert_eq!(x.count(dim), 12);
        assert_eq!(x.to_index(dim, &(0, 1)), 0);
        assert_eq!(x.to_index(dim, &(1, 0)), 1);
        assert_eq!(x.to_index(dim, &(0, 2)), 2);
        assert_eq!(x.to_index(dim, &(2, 0)), 3);
        assert_eq!(x.to_index(dim, &(1, 2)), 4);
        assert_eq!(x.to_index(dim, &(2, 1)), 5);
        assert_eq!(x.to_index(dim, &(0, 3)), 6);
        let mut new_pos = (0, 0);
        x.to_pos(dim, 6, &mut new_pos);
        assert_eq!(new_pos, (0, 3));
        x.to_pos(dim, 5, &mut new_pos);
        assert_eq!(new_pos, (2, 1));
    }

    #[test]
    fn of() {
        let x: NeqPair<Of<DimensionN>> = Construct::new();
        let ref dim = vec![2, 2];
        assert_eq!(x.count(dim), 12);
        assert_eq!(x.to_index(dim, &(vec![0, 0], vec![1, 0])), 0);
        assert_eq!(x.to_index(dim, &(vec![0, 0], vec![0, 1])), 2);
        assert_eq!(x.to_index(dim, &(vec![1, 0], vec![0, 1])), 4);
        assert_eq!(x.to_index(dim, &(vec![0, 0], vec![1, 1])), 6);
        assert_eq!(x.to_index(dim, &(vec![1, 0], vec![1, 1])), 8);
        assert_eq!(x.to_index(dim, &(vec![0, 1], vec![1, 1])), 10);
        let mut pos = (Vec::new(), Vec::new());
        for i in 0..6 {
            x.to_pos(dim, i, &mut pos);
            // println!("{} {}", &min[], &max[]);
        }
        x.to_pos(dim, 10, &mut pos);
        assert_eq!(&pos.0, &[0, 1]);
        assert_eq!(&pos.1, &[1, 1]);
    }
}