1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use generational_box::{GenerationalBox, UnsyncStorage};

use crate::{generational_box::current_owner, global_context::current_scope_id, Runtime, ScopeId};
use std::{cell::Cell, rc::Rc};

/// A wrapper around some generic data that handles the event's state
///
///
/// Prevent this event from continuing to bubble up the tree to parent elements.
///
/// # Example
///
/// ```rust, ignore
/// rsx! {
///     button {
///         onclick: move |evt: Event<MouseData>| {
///             evt.cancel_bubble();
///
///         }
///     }
/// }
/// ```
pub struct Event<T: 'static + ?Sized> {
    /// The data associated with this event
    pub data: Rc<T>,
    pub(crate) propagates: Rc<Cell<bool>>,
}

impl<T: ?Sized + 'static> Event<T> {
    pub(crate) fn new(data: Rc<T>, bubbles: bool) -> Self {
        Self {
            data,
            propagates: Rc::new(Cell::new(bubbles)),
        }
    }
}

impl<T> Event<T> {
    /// Map the event data to a new type
    ///
    /// # Example
    ///
    /// ```rust, ignore
    /// rsx! {
    ///    button {
    ///       onclick: move |evt: Event<FormData>| {
    ///          let data = evt.map(|data| data.value());
    ///          assert_eq!(data.inner(), "hello world");
    ///       }
    ///    }
    /// }
    /// ```
    pub fn map<U: 'static, F: FnOnce(&T) -> U>(&self, f: F) -> Event<U> {
        Event {
            data: Rc::new(f(&self.data)),
            propagates: self.propagates.clone(),
        }
    }

    /// Prevent this event from continuing to bubble up the tree to parent elements.
    ///
    /// # Example
    ///
    /// ```rust, ignore
    /// rsx! {
    ///     button {
    ///         onclick: move |evt: Event<MouseData>| {
    ///             evt.cancel_bubble();
    ///         }
    ///     }
    /// }
    /// ```
    #[deprecated = "use stop_propagation instead"]
    pub fn cancel_bubble(&self) {
        self.propagates.set(false);
    }

    /// Prevent this event from continuing to bubble up the tree to parent elements.
    ///
    /// # Example
    ///
    /// ```rust, ignore
    /// rsx! {
    ///     button {
    ///         onclick: move |evt: Event<MouseData>| {
    ///             evt.stop_propagation();
    ///         }
    ///     }
    /// }
    /// ```
    pub fn stop_propagation(&self) {
        self.propagates.set(false);
    }

    /// Get a reference to the inner data from this event
    ///
    /// ```rust, ignore
    /// rsx! {
    ///     button {
    ///         onclick: move |evt: Event<MouseData>| {
    ///             let data = evt.inner.clone();
    ///             cx.spawn(async move {
    ///                 println!("{:?}", data);
    ///             });
    ///         }
    ///     }
    /// }
    /// ```
    pub fn data(&self) -> Rc<T> {
        self.data.clone()
    }
}

impl<T: ?Sized> Clone for Event<T> {
    fn clone(&self) -> Self {
        Self {
            propagates: self.propagates.clone(),
            data: self.data.clone(),
        }
    }
}

impl<T> std::ops::Deref for Event<T> {
    type Target = Rc<T>;
    fn deref(&self) -> &Self::Target {
        &self.data
    }
}

impl<T: std::fmt::Debug> std::fmt::Debug for Event<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("UiEvent")
            .field("bubble_state", &self.propagates)
            .field("data", &self.data)
            .finish()
    }
}

/// The callback type generated by the `rsx!` macro when an `on` field is specified for components.
///
/// This makes it possible to pass `move |evt| {}` style closures into components as property fields.
///
///
/// # Example
///
/// ```rust, ignore
/// rsx!{
///     MyComponent { onclick: move |evt| tracing::debug!("clicked") }
/// }
///
/// #[derive(Props)]
/// struct MyProps {
///     onclick: EventHandler<MouseEvent>,
/// }
///
/// fn MyComponent(cx: MyProps) -> Element {
///     rsx!{
///         button {
///             onclick: move |evt| cx.onclick.call(evt),
///         }
///     }
/// }
///
/// ```
pub struct EventHandler<T = ()> {
    pub(crate) origin: ScopeId,
    pub(super) callback: GenerationalBox<Option<ExternalListenerCallback<T>>>,
}

impl<T: 'static> Default for EventHandler<T> {
    fn default() -> Self {
        EventHandler::new(|_| {})
    }
}

impl<F: FnMut(T) + 'static, T: 'static> From<F> for EventHandler<T> {
    fn from(f: F) -> Self {
        EventHandler::new(f)
    }
}

impl<T> Copy for EventHandler<T> {}

impl<T> Clone for EventHandler<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: 'static> PartialEq for EventHandler<T> {
    fn eq(&self, _: &Self) -> bool {
        true
    }
}

type ExternalListenerCallback<T> = Box<dyn FnMut(T)>;

impl<T: 'static> EventHandler<T> {
    /// Create a new [`EventHandler`] from an [`FnMut`]
    #[track_caller]
    pub fn new(mut f: impl FnMut(T) + 'static) -> EventHandler<T> {
        let owner = current_owner::<UnsyncStorage>();
        let callback = owner.insert(Some(Box::new(move |event: T| {
            f(event);
        }) as Box<dyn FnMut(T)>));
        EventHandler {
            callback,
            origin: current_scope_id().expect("to be in a dioxus runtime"),
        }
    }

    /// Call this event handler with the appropriate event type
    ///
    /// This borrows the event using a RefCell. Recursively calling a listener will cause a panic.
    pub fn call(&self, event: T) {
        if let Some(callback) = self.callback.write().as_mut() {
            Runtime::with(|rt| rt.scope_stack.borrow_mut().push(self.origin));
            callback(event);
            Runtime::with(|rt| rt.scope_stack.borrow_mut().pop());
        }
    }

    /// Forcibly drop the internal handler callback, releasing memory
    ///
    /// This will force any future calls to "call" to not doing anything
    pub fn release(&self) {
        self.callback.set(None);
    }

    #[doc(hidden)]
    /// This should only be used by the `rsx!` macro.
    pub fn __set(&mut self, value: impl FnMut(T) + 'static) {
        self.callback.set(Some(Box::new(value)));
    }

    #[doc(hidden)]
    /// This should only be used by the `rsx!` macro.
    pub fn __take(&self) -> ExternalListenerCallback<T> {
        self.callback
            .manually_drop()
            .expect("Signal has already been dropped")
            .expect("EventHandler was manually dropped")
    }
}

impl<T: 'static> std::ops::Deref for EventHandler<T> {
    type Target = dyn Fn(T) + 'static;

    fn deref(&self) -> &Self::Target {
        // https://github.com/dtolnay/case-studies/tree/master/callable-types

        // First we create a closure that captures something with the Same in memory layout as Self (MaybeUninit<Self>).
        let uninit_callable = std::mem::MaybeUninit::<Self>::uninit();
        // Then move that value into the closure. We assume that the closure now has a in memory layout of Self.
        let uninit_closure = move |t| Self::call(unsafe { &*uninit_callable.as_ptr() }, t);

        // Check that the size of the closure is the same as the size of Self in case the compiler changed the layout of the closure.
        let size_of_closure = std::mem::size_of_val(&uninit_closure);
        assert_eq!(size_of_closure, std::mem::size_of::<Self>());

        // Then cast the lifetime of the closure to the lifetime of &self.
        fn cast_lifetime<'a, T>(_a: &T, b: &'a T) -> &'a T {
            b
        }
        let reference_to_closure = cast_lifetime(
            {
                // The real closure that we will never use.
                &uninit_closure
            },
            // We transmute self into a reference to the closure. This is safe because we know that the closure has the same memory layout as Self so &Closure == &Self.
            unsafe { std::mem::transmute(self) },
        );

        // Cast the closure to a trait object.
        reference_to_closure as &_
    }
}