1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//! Some item definitions used in instances to provide a virtual representative
//! structure of `.cnf` or `.sat` files and their associated clauses or formula.

/// Represents a variable within a SAT instance.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Var(pub u64);

impl Var {
	/// Converts a variable into its representative `u64` value.
	pub fn to_u64(self) -> u64 { self.0 }
}

/// Represents the sign of a literal.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Sign {
	/// Positive sign.
	Pos,

	/// Negative sign.
	Neg
}

/// Represents a literal within clauses of formulas of a SAT instance.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Lit(i64);

impl Lit {
	/// Returns the underlying `i64` representant of this literal.
	pub fn from_i64(val: i64) -> Lit { Lit(val) }

	/// Returns the associated variable for this literal.
	pub fn var(self) -> Var { Var(self.0.abs() as u64) }

	/// Returns the sign of this literal.
	pub fn sign(self) -> Sign {
		match self.0 >= 0 {
			true => Sign::Pos,
			_    => Sign::Neg
		}
	}
}

/// Represents a clause instance within a `.cnf` file.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Clause {
	lits: Box<[Lit]>
}

impl Clause {
	/// Creates a new clause from a vector of literals.
	pub fn from_vec(lits: Vec<Lit>) -> Clause {
		Clause{
			lits: lits.into_boxed_slice()
		}
	}

	/// Returns the number of literals of this clause.
	pub fn len(&self) -> usize {
		self.lits.len()
	}

	/// Returns a slice over the literals of this clause.
	pub fn lits(&self) -> &[Lit] {
		&self.lits
	}
}

/// An indirection to a `Formula` via `Box`.
pub type FormulaBox  = Box<Formula>;

/// An immutable list of `Formula`s.
pub type FormulaList = Box<[Formula]>;

/// Represents the structure of formulas of `.sat` files.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Formula {
	/// A single literal. This is the leaf node type of sat formulas.
	Lit(Lit),

	/// Represents `(f)` if `f` is a valid formula.
	Paren(FormulaBox),

	/// Represents `-(f)` if `f` is a valid formula.
	/// This negates the result of the inner `f`.
	Neg(FormulaBox),

	/// Represents `*(f_1 .. f_k)` if `f_1, .., f_k` are valid formulas.
	/// The effect is a logical and of its inner formulas.
	And(FormulaList),

	/// Represents `+(f_1 .. f_k)` if `f_1, .., f_k` are valid formulas.
	/// The effect is a logical or of its inner formulas.
	Or(FormulaList),

	/// Represents `xor(f_1 .. f_k)` if `f_1, .., f_k` are valid formulas.
	/// The effect is a logical xor of its inner formulas.
	Xor(FormulaList),

	/// Represents `=(f_1 .. f_k)` if `f_1, .., f_k` are valid formulas.
	/// The effect is a logical equals of its inner formulas.
	Eq(FormulaList)
}

impl Formula {
	/// Creates a new literal leaf formula with the given literal.
	pub fn lit(lit: Lit) -> Formula {
		Formula::Lit(lit)
	}

	/// Wraps the inner formula within parentheses.
	pub fn paren(inner: Formula) -> Formula {
		Formula::Paren(Box::new(inner))
	}

	/// Negates the inner formula.
	pub fn neg(inner: Formula) -> Formula {
		Formula::Neg(Box::new(inner))
	}

	/// Creates a logical and formula of all given formulas in `param`.
	pub fn and(params: Vec<Formula>) -> Formula {
		Formula::And(params.into_boxed_slice())
	}

	/// Creates a logical or formula of all given formulas in `param`.
	pub fn or(params: Vec<Formula>) -> Formula {
		Formula::Or(params.into_boxed_slice())
	}

	/// Creates a logical xor formula of all given formulas in `param`.
	pub fn xor(params: Vec<Formula>) -> Formula {
		Formula::Xor(params.into_boxed_slice())
	}

	/// Creates a logical equality formula of all given formulas in `param`.
	pub fn eq(params: Vec<Formula>) -> Formula {
		Formula::Eq(params.into_boxed_slice())
	}
}

/// Represents a SAT instance for `.cnf` or `.sat` files.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Instance {
	/// A `.cnf` SAT instance with clauses.
	Cnf{
		/// The number of unique variables used within this `.cnf` SAT instance.
		num_vars: u64,

		/// The clauses within this `.cnf` SAT instance formula.
		clauses: Box<[Clause]>
	},

	/// A `.sat` SAT instance with an underlying formula and extensions.
	Sat{
		/// The number of unique variables used within this `.sat` SAT instance.
		num_vars: u64,

		/// Extensions (e.g. `XOR` or `EQ`) being used in this SAT instance.
		extensions: Extensions,

		/// The underlying formula of this SAT instance.
		formula: Formula
	}
}

impl Instance {
	/// Creates a new SAT instance for `.cnf` files with given clauses.
	pub fn cnf(num_vars: u64, clauses: Vec<Clause>) -> Instance {
		Instance::Cnf{num_vars: num_vars, clauses: clauses.into_boxed_slice()}
	}

	/// Creates a new SAT instance for `.sat` files with given extensions and an underlying formula.
	pub fn sat(num_vars: u64, extensions: Extensions, formula: Formula) -> Instance {
		Instance::Sat{num_vars: num_vars, extensions: extensions, formula: formula}
	}
}

bitflags! {
	/// Possible extensions for `.sat` file SAT instances.
    pub flags Extensions: u32 {
    	/// If no extensions are being used.
    	const NONE = 0b00000000,
    	/// If the XOR-Extension is being used to allow for `xor(..)` formulas.
        const XOR  = 0b00000001,
        /// If the EQ-Extension is being used to allow for `=(..)` formulas.
        const EQ   = 0b00000010
    }
}