1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! A generic cursor implementation merging multiple cursors.

use super::Cursor;

/// Provides a cursor interface over a list of cursors.
///
/// The `CursorList` keeps its cursor ordered by `key`, and cursors with the smallest key are then ordered by `val`.
///
/// At any point, the current elements (keys, vals) are determined by the number of leading equivalent keys and 
/// equivalent values in `self.cursors`. Although they are implicit in `self.cursors`, We maintain these values 
/// explicitly, in `self.equiv_keys` and `self.equiv_vals`. We also track the number of valid keys and valid 
/// values, to avoid continually re-considering cursors in invalid states.
#[derive(Debug)]
pub struct CursorList<K, V, T, R, C: Cursor<K, V, T, R>> {
	_phantom: ::std::marker::PhantomData<(K, V, T, R)>,
	cursors: Vec<(C, usize)>,	// ordered by valid keys and valid values.
	equiv_keys: usize,	// cursors[..equiv_keys] all have the same key.
	equiv_vals: usize,	// cursors[..equiv_vals] all have the same key and value.
	valid_keys: usize,	// cursors[..valid_keys] all have valid_key() true.
	valid_vals: usize,	// cursors[..valid_vals] all have valid_val() true.
}

impl<K, V, T, R, C: Cursor<K, V, T, R>> CursorList<K, V, T, R, C> where K: Ord, V: Ord {
	/// Creates a new cursor list from pre-existing cursors.
	pub fn new(cursors: Vec<C>, storage: &Vec<C::Storage>) -> Self {
		let cursors_len = cursors.len();
		let mut result = CursorList {
			_phantom: ::std::marker::PhantomData,
			cursors: cursors.into_iter().enumerate().map(|(i,c)| (c,i)).collect(),
			equiv_keys: cursors_len,
			equiv_vals: 0,
			valid_keys: cursors_len,
			valid_vals: 0,
		};

		result.tidy_keys(storage, cursors_len);
		result
	}

	/// Re-sorts the first `valid_keys` cursors under the assumption that cursors[prefix .. valid_keys] are ordered by key.
	fn tidy_keys(&mut self, storage: &Vec<C::Storage>, prefix: usize) {

		// 0. invalidate this, because.
		self.equiv_keys = 0;

		// 1. move invalid cursors to `self.valid_vals` and decrement appropriately.
		let mut dirty = 0; 
		for index in 0 .. prefix {
			if self.cursors[index].0.key_valid(&storage[self.cursors[index].1]) {
				self.cursors.swap(dirty, index);
				dirty += 1;
			}
		}
		if prefix - dirty > 0 {	// must translate valid keys down
			for index in prefix .. self.valid_keys {
				self.cursors.swap(index, index - (prefix - dirty));
			}
		}
		self.valid_keys -= prefix - dirty;

		// 2. If disorderly values remain, .. 
		if dirty > 0 {
			// a. identify the largest value among them.
			let mut max_index = 0;
			for index in 1 .. dirty {
				if self.cursors[index].0.key(&storage[self.cursors[index].1]) > self.cursors[max_index].0.key(&storage[self.cursors[max_index].1]) {
					max_index = index;
				}
			}
			// b. determine how many of the ordered values we must involve.
			let mut beyond = dirty;
			while beyond < self.valid_keys && self.cursors[beyond].0.key(&storage[self.cursors[beyond].1]) < self.cursors[max_index].0.key(&storage[self.cursors[max_index].1]) {
				beyond += 1;
			}
			// c. sort those cursors.
			self.cursors[.. beyond].sort_by(|x,y| x.0.key(&storage[x.1]).cmp(y.0.key(&storage[y.1])));
			// println!("{:?} / {:?}", beyond, self.cursors.len());
		}
		
		// 3. count equivalent keys (if any are valid)
		if self.valid_keys > 0 {
			self.equiv_keys = 1;
			while self.equiv_keys < self.valid_keys && self.cursors[self.equiv_keys].0.key(&storage[self.cursors[self.equiv_keys].1]) == self.cursors[0].0.key(&storage[self.cursors[0].1]) {
				self.equiv_keys += 1;
			}
		}

		// 4. order equivalent keys by value.
		let to_tidy = self.equiv_keys;
		self.valid_vals = self.equiv_keys;	// <-- presumably true? 
		self.tidy_vals(storage, to_tidy);
	}
	/// Re-sorts the first `valid_vals` cursors under the assumption that cursors[prefix .. valid_vals] are ordered by value.
	fn tidy_vals(&mut self, storage: &Vec<C::Storage>, prefix: usize) {

		// 0. invalidate this, because.
		self.equiv_vals = 0;

		// 1. move invalid cursors to `self.valid_vals` and decrement appropriately.
		let mut dirty = 0; 
		for index in 0 .. prefix {
			if self.cursors[index].0.val_valid(&storage[self.cursors[index].1]) {
				self.cursors.swap(dirty, index);
				dirty += 1;
			}
		}
		if prefix - dirty > 0 {
			for index in prefix .. self.valid_vals {
				self.cursors.swap(index, index - (prefix - dirty));
			}
		}
		self.valid_vals -= prefix - dirty;

		// 2. If disorderly values remain, .. 
		if dirty > 0 {
			// a. identify the largest value among them.
			let mut max_index = 0;
			for index in 1 .. dirty {
				if self.cursors[index].0.val(&storage[self.cursors[index].1]) > self.cursors[max_index].0.val(&storage[self.cursors[max_index].1]) {
					max_index = index;
				}
			}
			// b. determine how many of the ordered values we must involve.
			let mut beyond = dirty;
			while beyond < self.valid_vals && self.cursors[beyond].0.val(&storage[self.cursors[beyond].1]) < self.cursors[max_index].0.val(&storage[self.cursors[max_index].1]) {
				beyond += 1;
			}
			// c. sort those cursors.
			self.cursors[.. beyond].sort_by(|x,y| x.0.val(&storage[x.1]).cmp(y.0.val(&storage[y.1])));
		}

		// 3. count equivalent values
		if self.valid_vals > 0 {
			self.equiv_vals = 1;
			while self.equiv_vals < self.valid_vals && self.cursors[self.equiv_vals].0.val(&storage[self.cursors[self.equiv_vals].1]) == self.cursors[0].0.val(&storage[self.cursors[0].1]) {
				self.equiv_vals += 1;
			}
		}
	}
}

impl<K, V, T, R, C: Cursor<K, V, T, R>> Cursor<K, V, T, R> for CursorList<K, V, T, R, C> 
where 
	K: Ord, 
	V: Ord {

	type Storage = Vec<C::Storage>;

	// validation methods
	fn key_valid(&self, _storage: &Self::Storage) -> bool { self.valid_keys > 0 }
	fn val_valid(&self, _storage: &Self::Storage) -> bool { self.valid_vals > 0 }

	// accessors 
	fn key<'a>(&self, storage: &'a Self::Storage) -> &'a K { 
		debug_assert!(self.key_valid(storage));
		self.cursors[0].0.key(&storage[self.cursors[0].1])
	}
	fn val<'a>(&self, storage: &'a Self::Storage) -> &'a V { 
		debug_assert!(self.key_valid(storage));
		debug_assert!(self.val_valid(storage));
		self.cursors[0].0.val(&storage[self.cursors[0].1]) 
	}
	fn map_times<L: FnMut(&T, R)>(&mut self, storage: &Self::Storage, mut logic: L) {
		for cursor in &mut self.cursors[.. self.equiv_vals] {
			cursor.0.map_times(&storage[cursor.1], |t,d| logic(t,d));
		}
	}

	// key methods
	fn step_key(&mut self, storage: &Self::Storage) {
		for cursor in &mut self.cursors[.. self.equiv_keys] {
			cursor.0.step_key(&storage[cursor.1]);
		}
		let to_tidy = self.equiv_keys;
		self.tidy_keys(storage, to_tidy);
	}
	fn seek_key(&mut self, storage: &Self::Storage, key: &K) {
		let mut index = 0;
		while index < self.valid_keys && self.cursors[index].0.key(&storage[self.cursors[index].1]) < &key {
			let temp = self.cursors[index].1;
			self.cursors[index].0.seek_key(&storage[temp], key);
			index += 1;
		}
		self.tidy_keys(storage, index);
	}
	
	// value methods
	fn step_val(&mut self, storage: &Self::Storage) {
		for cursor in &mut self.cursors[.. self.equiv_vals] {
			cursor.0.step_val(&storage[cursor.1]);
		}
		let to_tidy = self.equiv_vals;
		self.tidy_vals(storage, to_tidy);
	}
	fn seek_val(&mut self, storage: &Self::Storage, val: &V) {
		let mut index = 0;
		while index < self.valid_vals && self.cursors[index].0.val(&storage[self.cursors[index].1]) < &val {
			let temp = self.cursors[index].1;
			self.cursors[index].0.seek_val(&storage[temp], val);
			index += 1;
		}
		self.tidy_vals(storage, index);
	}

	// rewinding methods
	fn rewind_keys(&mut self, storage: &Self::Storage) { 
		let len = self.cursors.len();
		self.valid_keys = len;
		for cursor in &mut self.cursors[.. len] {
			cursor.0.rewind_keys(&storage[cursor.1]);
		}
		self.tidy_keys(storage, len);
	}
	fn rewind_vals(&mut self, storage: &Self::Storage) { 
		let len = self.equiv_keys;
		self.valid_vals = len;
		for cursor in &mut self.cursors[.. len] {
			cursor.0.rewind_vals(&storage[cursor.1]);
		}
		self.tidy_vals(storage, len);
	}
}