1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//! Match pairs of records based on a key.
//!
//! The various `join` implementations require that the units of each collection can be multiplied, and that
//! the multiplication distributes over addition. That is, we will repeatedly evaluate (a + b) * c as (a * c)
//! + (b * c), and if this is not equal to the former term, little is known about the actual output.
use std::fmt::Debug;
use std::ops::Mul;
use std::cmp::Ordering;

use timely::progress::Timestamp;
use timely::dataflow::Scope;
use timely::dataflow::operators::generic::{Operator, OutputHandle};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::Capability;
use timely::dataflow::channels::pushers::tee::Tee;

use hashable::Hashable;
use ::{Data, ExchangeData, Collection, AsCollection};
use ::difference::{Monoid, Abelian};
use lattice::Lattice;
use operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf};
use trace::{BatchReader, Cursor, consolidate};
use operators::ValueHistory;

use trace::TraceReader;

/// Join implementations for `(key,val)` data.
pub trait Join<G: Scope, K: Data, V: Data, R: Monoid> {

    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///         let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    ///         let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;
    ///
    ///         x.join(&y)
    ///          .assert_eq(&z);
    ///     });
    /// }
    /// ```
    fn join<V2, R2>(&self, other: &Collection<G, (K,V2), R2>) -> Collection<G, (K,(V,V2)), <R as Mul<R2>>::Output>
    where
        K: ExchangeData,
        V2: ExchangeData,
        R2: ExchangeData+Monoid,
        R: Mul<R2>,
        <R as Mul<R2>>::Output: Monoid
    {
        self.join_map(other, |k,v,v2| (k.clone(),(v.clone(),v2.clone())))
    }

    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///         let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    ///         let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
    ///
    ///         x.join_map(&y, |_key, &a, &b| (a,b))
    ///          .assert_eq(&z);
    ///     });
    /// }
    /// ```
    fn join_map<V2, R2, D, L>(&self, other: &Collection<G, (K,V2), R2>, logic: L) -> Collection<G, D, <R as Mul<R2>>::Output>
    where K: ExchangeData, V2: ExchangeData, R2: ExchangeData+Monoid, R: Mul<R2>, <R as Mul<R2>>::Output: Monoid, D: Data, L: Fn(&K, &V, &V2)->D+'static;

    /// Matches pairs `(key, val)` and `key` based on `key`, producing the former with frequencies multiplied.
    ///
    /// When the second collection contains frequencies that are either zero or one this is the more traditional
    /// relational semijoin. When the second collection may contain multiplicities, this operation may scale up
    /// the counts of the records in the first input.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///         let y = scope.new_collection_from(vec![0, 2]).1;
    ///         let z = scope.new_collection_from(vec![(0, 1)]).1;
    ///
    ///         x.semijoin(&y)
    ///          .assert_eq(&z);
    ///     });
    /// }
    /// ```
    fn semijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Mul<R2>>::Output>
    where K: ExchangeData, R2: ExchangeData+Monoid, R: Mul<R2>, <R as Mul<R2>>::Output: Monoid;
    /// Subtracts the semijoin with `other` from `self`.
    ///
    /// In the case that `other` has multiplicities zero or one this results
    /// in a relational antijoin, in which we discard input records whose key
    /// is present in `other`. If the multiplicities could be other than zero
    /// or one, the semantic interpretation of this operator is less clear.
    ///
    /// In almost all cases, you should ensure that `other` has multiplicities
    /// that are zero or one, perhaps by using the `distinct` operator.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///         let y = scope.new_collection_from(vec![0, 2]).1;
    ///         let z = scope.new_collection_from(vec![(1, 3)]).1;
    ///
    ///         x.antijoin(&y)
    ///          .assert_eq(&z);
    ///     });
    /// }
    /// ```
    fn antijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
    where K: ExchangeData, R2: ExchangeData+Monoid, R: Mul<R2, Output = R>, R: Abelian;
}

impl<G, K, V, R> Join<G, K, V, R> for Collection<G, (K, V), R>
where
    G: Scope,
    K: ExchangeData+Hashable,
    V: ExchangeData,
    R: ExchangeData+Monoid,
    G::Timestamp: Lattice+Ord,
{
    fn join_map<V2: ExchangeData, R2: ExchangeData+Monoid, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, logic: L) -> Collection<G, D, <R as Mul<R2>>::Output>
    where R: Mul<R2>, <R as Mul<R2>>::Output: Monoid, L: Fn(&K, &V, &V2)->D+'static {
        let arranged1 = self.arrange_by_key();
        let arranged2 = other.arrange_by_key();
        arranged1.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
    }

    fn semijoin<R2: ExchangeData+Monoid>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Mul<R2>>::Output>
    where R: Mul<R2>, <R as Mul<R2>>::Output: Monoid {
        let arranged1 = self.arrange_by_key();
        let arranged2 = other.arrange_by_self();
        arranged1.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
    }

    fn antijoin<R2: ExchangeData+Monoid>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
    where R: Mul<R2, Output=R>, R: Abelian {
        self.concat(&self.semijoin(other).negate())
    }
}

impl<G, Tr> Join<G, Tr::Key, Tr::Val, Tr::R> for Arranged<G, Tr>
where
    G: Scope,
    G::Timestamp: Lattice+Ord,
    Tr: TraceReader<Time=G::Timestamp>+Clone+'static,
    Tr::Key: Data+Hashable,
    Tr::Val: Data,
    Tr::R: Monoid,
    Tr::Batch: BatchReader<Tr::Key,Tr::Val,G::Timestamp,Tr::R>+'static,
    Tr::Cursor: Cursor<Tr::Key,Tr::Val,G::Timestamp,Tr::R>+'static,
{
    fn join_map<V2: ExchangeData, R2: ExchangeData+Monoid, D: Data, L>(&self, other: &Collection<G, (Tr::Key, V2), R2>, logic: L) -> Collection<G, D, <Tr::R as Mul<R2>>::Output>
    where Tr::Key: ExchangeData, Tr::R: Mul<R2>, <Tr::R as Mul<R2>>::Output: Monoid, L: Fn(&Tr::Key, &Tr::Val, &V2)->D+'static {
        let arranged2 = other.arrange_by_key();
        self.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
    }

    fn semijoin<R2: ExchangeData+Monoid>(&self, other: &Collection<G, Tr::Key, R2>) -> Collection<G, (Tr::Key, Tr::Val), <Tr::R as Mul<R2>>::Output>
    where Tr::Key: ExchangeData, Tr::R: Mul<R2>, <Tr::R as Mul<R2>>::Output: Monoid {
        let arranged2 = other.arrange_by_self();
        self.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
    }

    fn antijoin<R2: ExchangeData+Monoid>(&self, other: &Collection<G, Tr::Key, R2>) -> Collection<G, (Tr::Key, Tr::Val), Tr::R>
    where Tr::Key: ExchangeData, Tr::R: Mul<R2, Output=Tr::R>, Tr::R: Abelian {
        self.as_collection(|k,v| (k.clone(), v.clone()))
            .concat(&self.semijoin(other).negate())
    }
}

/// Matches the elements of two arranged traces.
///
/// This method is used by the various `join` implementations, but it can also be used
/// directly in the event that one has a handle to an `Arranged<G,T>`, perhaps because
/// the arrangement is available for re-use, or from the output of a `group` operator.
pub trait JoinCore<G: Scope, K: 'static, V: 'static, R: Monoid> where G::Timestamp: Lattice+Ord {
    /// Joins two arranged collections with the same key type.
    ///
    /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
    /// which produces something implementing `IntoIterator`, where the output collection will have
    ///
    /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
    /// contains the implementations for collections.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate timely;
    /// extern crate differential_dataflow;
    ///
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::arrange::ArrangeByKey;
    /// use differential_dataflow::operators::join::JoinCore;
    /// use differential_dataflow::trace::Trace;
    /// use differential_dataflow::trace::implementations::ord::OrdValSpine;
    /// use differential_dataflow::hashable::OrdWrapper;
    ///
    /// fn main() {
    ///     ::timely::example(|scope| {
    ///
    ///         let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
    ///                      .arrange_by_key();
    ///         let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
    ///                      .arrange_by_key();
    ///
    ///         let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
    ///
    ///         x.join_core(&y, |_key, &a, &b| Some((a, b)))
    ///          .assert_eq(&z);
    ///     });
    /// }
    /// ```
    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Mul<Tr2::R>>::Output>
    where
        Tr2: TraceReader<Key=K, Time=G::Timestamp>+Clone+'static,
        Tr2::Batch: BatchReader<K, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::Cursor: Cursor<K, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::Val: Ord+Clone+Debug+'static,
        Tr2::R: Monoid,
        R: Mul<Tr2::R>,
        <R as Mul<Tr2::R>>::Output: Monoid,
        I: IntoIterator,
        I::Item: Data,
        L: Fn(&K,&V,&Tr2::Val)->I+'static,
        ;
}


impl<G, K, V, R> JoinCore<G, K, V, R> for Collection<G, (K, V), R>
where
    G: Scope,
    K: ExchangeData+Hashable,
    V: ExchangeData,
    R: ExchangeData+Monoid,
    G::Timestamp: Lattice+Ord,
{
    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Mul<Tr2::R>>::Output>
    where
        Tr2: TraceReader<Key=K, Time=G::Timestamp>+Clone+'static,
        Tr2::Batch: BatchReader<K, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::Cursor: Cursor<K, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::Val: Ord+Clone+Debug+'static,
        Tr2::R: Monoid,
        R: Mul<Tr2::R>,
        <R as Mul<Tr2::R>>::Output: Monoid,
        I: IntoIterator,
        I::Item: Data,
        L: Fn(&K,&V,&Tr2::Val)->I+'static,
    {
        self.arrange_by_key()
            .join_core(stream2, result)
    }
}

impl<G, T1> JoinCore<G, T1::Key, T1::Val, T1::R> for Arranged<G,T1>
    where
        G: Scope,
        G::Timestamp: Lattice+Ord+Debug,
        T1: TraceReader<Time=G::Timestamp>+Clone+'static,
        T1::Key: Ord+Debug+'static,
        T1::Val: Ord+Clone+Debug+'static,
        T1::R: Monoid,
        T1::Batch: BatchReader<T1::Key,T1::Val,G::Timestamp,T1::R>+'static,
        T1::Cursor: Cursor<T1::Key,T1::Val,G::Timestamp,T1::R>+'static,
{
    fn join_core<Tr2,I,L>(&self, other: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<T1::R as Mul<Tr2::R>>::Output>
    where
        Tr2::Val: Ord+Clone+Debug+'static,
        Tr2: TraceReader<Key=T1::Key,Time=G::Timestamp>+Clone+'static,
        Tr2::Batch: BatchReader<T1::Key, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::Cursor: Cursor<T1::Key, Tr2::Val, G::Timestamp, Tr2::R>+'static,
        Tr2::R: Monoid,
        T1::R: Mul<Tr2::R>,
        <T1::R as Mul<Tr2::R>>::Output: Monoid,
        I: IntoIterator,
        I::Item: Data,
        L: Fn(&T1::Key,&T1::Val,&Tr2::Val)->I+'static {

        // handles to shared trace data structures.
        let mut trace1 = Some(self.trace.clone());
        let mut trace2 = Some(other.trace.clone());

        // acknowledged frontier for each input.
        let mut acknowledged1: Option<Vec<G::Timestamp>> = None;
        let mut acknowledged2: Option<Vec<G::Timestamp>> = None;

        // deferred work of batches from each input.
        let mut todo1 = Vec::new();
        let mut todo2 = Vec::new();

        let mut input1_buffer = Vec::new();
        let mut input2_buffer = Vec::new();

        self.stream.binary_frontier(&other.stream, Pipeline, Pipeline, "Join", move |_cap, info| {

            use timely::scheduling::Activator;
            let activations = self.stream.scope().activations().clone();
            let activator = Activator::new(&info.address[..], activations);

            move |input1, input2, output| {

                // The join computation repeatedly accepts batches of updates from each of its inputs.
                //
                // For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
                // updates from its other input. It is important to track which updates have been accepted, through
                // a combination of the input's frontier and the most recently received batch's upper bound, because
                // we use a shared trace and there may be updates present that are in advance of this accepted bound.

                // drain input 1, prepare work.
                input1.for_each(|capability, data| {
                    if let Some(ref mut trace2) = trace2 {
                        let capability = capability.retain();
                        data.swap(&mut input1_buffer);
                        for batch1 in input1_buffer.drain(..) {
                            if let Some(acknowledged2) = &acknowledged2 {
                                // TODO : cursor_through may be problematic for pre-merged traces.
                                let (trace2_cursor, trace2_storage) = trace2.cursor_through(&acknowledged2[..]).unwrap();
                                let batch1_cursor = batch1.cursor();
                                todo1.push(Deferred::new(trace2_cursor, trace2_storage, batch1_cursor, batch1.clone(), capability.clone(), |r2,r1| (r1.clone()) * (r2.clone())));
                                // debug_assert!(batch1.description().lower() == &acknowledged1[..]);
                            }
                            acknowledged1 = Some(batch1.description().upper().to_vec());
                        }
                    }
                });

                // drain input 2, prepare work.
                input2.for_each(|capability, data| {
                    if let Some(ref mut trace1) = trace1 {
                        let capability = capability.retain();
                        data.swap(&mut input2_buffer);
                        for batch2 in input2_buffer.drain(..) {
                            if let Some(acknowledged1) = &acknowledged1 {
                                // TODO : cursor_through may be problematic for pre-merged traces.
                                let (trace1_cursor, trace1_storage) = trace1.cursor_through(&acknowledged1[..]).unwrap();
                                let batch2_cursor = batch2.cursor();
                                todo2.push(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone(), |r1,r2| (r1.clone()) * (r2.clone())));
                                // debug_assert!(batch2.description().lower() == &acknowledged2[..]);
                            }
                            acknowledged2 = Some(batch2.description().upper().to_vec());
                        }
                    }
                });

                // An arbitrary number, whose value guides the "responsiveness" of `join`; the operator
                // yields after producing this many records, to allow downstream operators to work and
                // move the produced records around.
                let mut fuel = 1_000_000;

                // perform some amount of outstanding work.
                while !todo1.is_empty() && fuel > 0 {
                    todo1[0].work(output, &|k,v2,v1| result(k,v1,v2), &mut fuel);
                    if !todo1[0].work_remains() { todo1.remove(0); }
                }

                // perform some amount of outstanding work.
                while !todo2.is_empty() && fuel > 0 {
                    todo2[0].work(output, &|k,v1,v2| result(k,v1,v2), &mut fuel);
                    if !todo2[0].work_remains() { todo2.remove(0); }
                }

                // Re-activate operator if work remains.
                if !todo1.is_empty() || !todo2.is_empty() {
                    activator.activate();
                }

                // shut down or advance trace2. if the frontier is empty we can shut it down,
                // and otherwise we can advance the trace by the acknowledged elements of the other input,
                // as we may still use them as thresholds (ie we must preserve `le` wrt `acknowledged`).
                // NOTE: We release capabilities here to allow light work to complete, which may result in
                //       unique ownership which would enable `advance_mut`.
                if trace2.is_some() && input1.frontier().is_empty() { trace2 = None; }
                if let Some(ref mut trace2) = trace2 {
                    trace2.advance_by(&input1.frontier().frontier()[..]);
                    if let Some(acknowledged2) = &acknowledged2 {
                        trace2.distinguish_since(&acknowledged2[..]);
                    }
                }

                // shut down or advance trace1.
                if trace1.is_some() && input2.frontier().is_empty() { trace1 = None; }
                if let Some(ref mut trace1) = trace1 {
                    trace1.advance_by(&input2.frontier().frontier()[..]);
                    if let Some(acknowledged1) = &acknowledged1 {
                        trace1.distinguish_since(&acknowledged1[..]);
                    }
                }
            }
        })
        .as_collection()
    }
}

/// Deferred join computation.
///
/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
/// dataflow system a chance to run operators that can consume and aggregate the data.
struct Deferred<K, V1, V2, T, R1, R2, R3, C1, C2, M, D>
where
    V1: Ord+Clone,
    V2: Ord+Clone,
    T: Timestamp+Lattice+Ord+Debug,
    R1: Monoid,
    R2: Monoid,
    C1: Cursor<K, V1, T, R1>,
    C2: Cursor<K, V2, T, R2>,
    M: Fn(&R1,&R2)->R3,
    D: Ord+Clone+Data,
{
    phant: ::std::marker::PhantomData<(K, V1, V2, R1, R2)>,
    trace: C1,
    trace_storage: C1::Storage,
    batch: C2,
    batch_storage: C2::Storage,
    capability: Capability<T>,
    mult: M,
    done: bool,
    temp: Vec<((D, T), R3)>,
    // thinker: JoinThinker<V1, V2, T, R1, R2>,
}

impl<K, V1, V2, T, R1, R2, R3, C1, C2, M, D> Deferred<K, V1, V2, T, R1, R2, R3, C1, C2, M, D>
where
    K: Ord+Debug+Eq,
    V1: Ord+Clone+Debug,
    V2: Ord+Clone+Debug,
    T: Timestamp+Lattice+Ord+Debug,
    R1: Monoid,
    R2: Monoid,
    R3: Monoid,
    C1: Cursor<K, V1, T, R1>,
    C2: Cursor<K, V2, T, R2>,
    M: Fn(&R1,&R2)->R3,
    D: Ord+Clone+Data,
{
    fn new(trace: C1, trace_storage: C1::Storage, batch: C2, batch_storage: C2::Storage, capability: Capability<T>, mult: M) -> Self {
        Deferred {
            phant: ::std::marker::PhantomData,
            trace,
            trace_storage,
            batch,
            batch_storage,
            capability,
            mult,
            done: false,
            temp: Vec::new(),
            // thinker: JoinThinker::new(),
        }
    }

    fn work_remains(&self) -> bool {
        !self.done
    }

    /// Process keys until at least `limit` output tuples produced, or the work is exhausted.
    #[inline(never)]
    fn work<L, I>(&mut self, output: &mut OutputHandle<T, (D, T, R3), Tee<T, (D, T, R3)>>, logic: &L, fuel: &mut usize)
    where I: IntoIterator<Item=D>, L: Fn(&K, &V1, &V2)->I {

        let meet = self.capability.time();

        let mut effort = 0;
        let mut session = output.session(&self.capability);

        let trace_storage = &self.trace_storage;
        let batch_storage = &self.batch_storage;

        let trace = &mut self.trace;
        let batch = &mut self.batch;
        let mult = &self.mult;

        let temp = &mut self.temp;
        // let thinker = &mut self.thinker;
        let mut thinker = JoinThinker::new();

        while batch.key_valid(batch_storage) && trace.key_valid(trace_storage) && effort < *fuel {

            match trace.key(trace_storage).cmp(batch.key(batch_storage)) {
                Ordering::Less => trace.seek_key(trace_storage, batch.key(batch_storage)),
                Ordering::Greater => batch.seek_key(batch_storage, trace.key(trace_storage)),
                Ordering::Equal => {

                    thinker.history1.edits.load(trace, trace_storage, |time| time.join(&meet));
                    thinker.history2.edits.load(batch, batch_storage, |time| time.clone());

                    assert_eq!(temp.len(), 0);

                    // populate `temp` with the results in the best way we know how.
                    thinker.think(|v1,v2,t,r1,r2|
                        for result in logic(batch.key(batch_storage), v1, v2) {
                            temp.push(((result, t.clone()), mult(r1, r2)));
                        }
                    );

                    // TODO: This consolidation is optional, and it may not be very
                    //       helpful. We might try harder to understand whether we
                    //       should do this work here, or downstream at consumers.
                    // TODO: Perhaps `thinker` should have the buffer, do smarter
                    //       consolidation, and then deposit results in `session`.
                    consolidate(temp, 0);

                    effort += temp.len();
                    for ((d, t), r) in temp.drain(..) {
                        session.give((d, t, r));
                    }

                    batch.step_key(batch_storage);
                    trace.step_key(trace_storage);

                    thinker.history1.clear();
                    thinker.history2.clear();
                }
            }
        }

        self.done = !batch.key_valid(batch_storage) || !trace.key_valid(trace_storage);

        if effort > *fuel { *fuel = 0; }
        else              { *fuel -= effort; }
    }
}

struct JoinThinker<'a, V1: Ord+Clone+'a, V2: Ord+Clone+'a, T: Lattice+Ord+Clone, R1: Monoid, R2: Monoid> {
    pub history1: ValueHistory<'a, V1, T, R1>,
    pub history2: ValueHistory<'a, V2, T, R2>,
}

impl<'a, V1: Ord+Clone, V2: Ord+Clone, T: Lattice+Ord+Clone, R1: Monoid, R2: Monoid> JoinThinker<'a, V1, V2, T, R1, R2>
where V1: Debug, V2: Debug, T: Debug
{
    fn new() -> Self {
        JoinThinker {
            history1: ValueHistory::new(),
            history2: ValueHistory::new(),
        }
    }

    fn think<F: FnMut(&V1,&V2,T,&R1,&R2)>(&mut self, mut results: F) {

        // for reasonably sized edits, do the dead-simple thing.
        if self.history1.edits.len() < 10 || self.history2.edits.len() < 10 {
            self.history1.edits.map(|v1, t1, d1| {
                self.history2.edits.map(|v2, t2, d2| {
                    results(v1, v2, t1.join(t2), &d1, &d2);
                })
            })
        }
        else {

            let mut replay1 = self.history1.replay();
            let mut replay2 = self.history2.replay();

            // TODO: It seems like there is probably a good deal of redundant `advance_buffer_by`
            //       in here. If a time is ever repeated, for example, the call will be identical
            //       and accomplish nothing. If only a single record has been added, it may not
            //       be worth the time to collapse (advance, re-sort) the data when a linear scan
            //       is sufficient.

            while !replay1.is_done() && !replay2.is_done() {

                if replay1.time().unwrap().cmp(&replay2.time().unwrap()) == ::std::cmp::Ordering::Less {
                    replay2.advance_buffer_by(replay1.meet().unwrap());
                    for &((ref val2, ref time2), ref diff2) in replay2.buffer().iter() {
                        let (val1, time1, ref diff1) = replay1.edit().unwrap();
                        results(val1, val2, time1.join(time2), diff1, diff2);
                    }
                    replay1.step();
                }
                else {
                    replay1.advance_buffer_by(replay2.meet().unwrap());
                    for &((ref val1, ref time1), ref diff1) in replay1.buffer().iter() {
                        let (val2, time2, ref diff2) = replay2.edit().unwrap();
                        results(val1, val2, time1.join(time2), diff1, diff2);
                    }
                    replay2.step();
                }
            }

            while !replay1.is_done() {
                replay2.advance_buffer_by(replay1.meet().unwrap());
                for &((ref val2, ref time2), ref diff2) in replay2.buffer().iter() {
                    let (val1, time1, ref diff1) = replay1.edit().unwrap();
                    results(val1, val2, time1.join(time2), diff1, diff2);
                }
                replay1.step();
            }
            while !replay2.is_done() {
                replay1.advance_buffer_by(replay2.meet().unwrap());
                for &((ref val1, ref time1), ref diff1) in replay1.buffer().iter() {
                    let (val2, time2, ref diff2) = replay2.edit().unwrap();
                    results(val1, val2, time1.join(time2), diff1, diff2);
                }
                replay2.step();
            }
        }
    }
}