1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

use crate::{
    account_address::AccountAddress,
    network_address::{NetworkAddress, ParseError},
};
use aes_gcm::{
    aead::{generic_array::GenericArray, AeadInPlace, NewAead},
    Aes256Gcm,
};
use diem_crypto::{compat::Sha3_256, hkdf::Hkdf};
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
use serde::{Deserialize, Serialize};
use std::mem;

/// The length in bytes of the AES-256-GCM authentication tag.
pub const AES_GCM_TAG_LEN: usize = 16;

/// The length in bytes of the AES-256-GCM nonce.
pub const AES_GCM_NONCE_LEN: usize = 12;

/// The length in bytes of the `shared_val_netaddr_key` and per-validator
/// `derived_key`.
pub const KEY_LEN: usize = 32;

/// Convenient type alias for the `shared_val_netaddr_key` as an array.
pub type Key = [u8; KEY_LEN];
pub type KeyVersion = u32;

/// Constant key + version so we can push `EncNetworkAddress` everywhere
/// without worrying about getting the key in the right places. these will be
/// test-only soon.
// TODO(philiphayes): feature gate for testing/fuzzing only
pub const TEST_SHARED_VAL_NETADDR_KEY: Key = [0u8; KEY_LEN];
pub const TEST_SHARED_VAL_NETADDR_KEY_VERSION: KeyVersion = 0;

/// We salt the HKDF for deriving the account keys to provide application
/// separation.
///
/// Note: modifying this salt is a backwards-incompatible protocol change.
///
/// For readers, the HKDF salt is equal to the following hex string:
/// `"7ffda2ae982a2ebfab2a4da62f76fe33592c85e02445b875f02ded51a520ba2a"` which is
/// also equal to the hash value `SHA3-256(b"DIEM_ENCRYPTED_NETWORK_ADDRESS_SALT")`.
///
/// ```
/// use diem_types::network_address::encrypted::HKDF_SALT;
/// use diem_crypto::hash::HashValue;
///
/// let derived_salt = HashValue::sha3_256_of(b"DIEM_ENCRYPTED_NETWORK_ADDRESS_SALT");
/// assert_eq!(HKDF_SALT.as_ref(), derived_salt.as_ref());
/// ```
pub const HKDF_SALT: [u8; 32] = [
    0x7f, 0xfd, 0xa2, 0xae, 0x98, 0x2a, 0x2e, 0xbf, 0xab, 0x2a, 0x4d, 0xa6, 0x2f, 0x76, 0xfe, 0x33,
    0x59, 0x2c, 0x85, 0xe0, 0x24, 0x45, 0xb8, 0x75, 0xf0, 0x2d, 0xed, 0x51, 0xa5, 0x20, 0xba, 0x2a,
];

/// An encrypted [`NetworkAddress`].
///
/// ### Threat Model
///
/// Encrypting the on-chain network addresses is purely a defense-in-depth
/// mitigation to minimize attack surface and reduce DDoS attacks on the validators
/// by restricting the visibility of their public-facing network addresses only
/// to other validators.
///
/// These encrypted network addresses are intended to be stored on-chain under
/// each validator's advertised network addresses in their [`ValidatorConfig`]s.
/// All validators share the secret `shared_val_netaddr_key`, though each validator's addresses
/// are encrypted using a per-validator `derived_key`.
///
/// ### Account Key
///
/// ```txt
/// derived_key := HKDF-SHA3-256::extract_and_expand(
///     salt=HKDF_SALT,
///     ikm=shared_val_netaddr_key,
///     info=account_address,
///     output_length=32,
/// )
/// ```
///
/// where `HKDF-SHA3-256::extract_and_expand` is
/// [HKDF extract-and-expand](https://tools.ietf.org/html/rfc5869) with SHA3-256,
/// [`HKDF_SALT`] is a constant salt for application separation, `shared_val_netaddr_key` is the
/// shared secret distributed amongst all the validators, and `account_address`
/// is the specific validator's [`AccountAddress`].
///
/// We use per-validator `derived_key`s to limit the "blast radius" of
/// nonce reuse to each validator, i.e., a validator that accidentally reuses a
/// nonce will only leak information about their network addresses or `derived_key`.
///
/// ### Encryption
///
/// A raw network address, `addr`, is then encrypted using AES-256-GCM like:
///
/// ```txt
/// enc_addr := AES-256-GCM::encrypt(
///     key=derived_key,
///     nonce=nonce,
///     ad=key_version,
///     message=addr,
/// )
/// ```
///
/// where `nonce` is a 96-bit integer as described below, `key_version` is
/// the key version as a u32 big-endian integer, `addr` is the serialized
/// [`NetworkAddress`], and `enc_addr` is the encrypted network address
/// concatenated with the 16-byte authentication tag.
///
/// ### Nonce
///
/// ```txt
/// nonce := seq_num || addr_idx
/// ```
///
/// where `seq_num` is the `seq_num` field as a u64 big-endian integer and
/// `addr_idx` is the index of the encrypted network address in the list of
/// network addresses as a u32 big-endian integer.
///
/// ### Sequence Number
///
/// In order to reduce the probability of nonce reuse, validators should use the
/// sequence number of the rotation transaction in the `seq_num` field.
///
/// ### Key Rotation
///
/// The `EncNetworkAddress` struct contains a `key_version` field, which
/// identifies the specific `shared_val_netaddr_key` used to encrypt/decrypt the
/// `EncNetworkAddress`.
///
/// [`ValidatorConfig`]: https://github.com/diem/diem/blob/main/language/diem-framework/modules/doc/ValidatorConfig.md
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
pub struct EncNetworkAddress {
    key_version: KeyVersion,
    seq_num: u64,
    #[serde(with = "serde_bytes")]
    enc_addr: Vec<u8>,
}

///////////////////////
// EncNetworkAddress //
///////////////////////

impl EncNetworkAddress {
    /// ### Panics
    ///
    /// encrypt will panic if `addr` length > 64 GiB.
    pub fn encrypt(
        addr: NetworkAddress,
        shared_val_netaddr_key: &Key,
        key_version: KeyVersion,
        account: &AccountAddress,
        seq_num: u64,
        addr_idx: u32,
    ) -> Result<Self, ParseError> {
        // unpack the NetworkAddress into its base Vec<u8>
        let mut addr_vec: Vec<u8> = bcs::to_bytes(&addr)?;

        let derived_key = Self::derive_key(shared_val_netaddr_key, account);
        let aead = Aes256Gcm::new(GenericArray::from_slice(&derived_key));

        // nonce := seq_num || addr_idx
        //
        // concatenate seq_num and addr_idx into a 12-byte AES-GCM nonce. both
        // seq_num and addr_idx are big-endian integers.
        //
        // ex: seq_num = 0x1234, addr_idx = 0x04
        //     ==> nonce_slice == &[0, 0, 0, 0, 0, 0, 0x12, 0x34, 0, 0, 0, 0x4]
        let nonce = (((seq_num as u128) << 32) | (addr_idx as u128)).to_be_bytes();
        let nonce_slice = &nonce[mem::size_of::<u128>() - AES_GCM_NONCE_LEN..];
        let nonce_slice = GenericArray::from_slice(nonce_slice);

        // the key_version is in-the-clear, so we include it in the integrity check
        // using the "associated data"
        let ad_buf = key_version.to_be_bytes();
        let ad_slice = &ad_buf[..];

        // encrypt the raw network address in-place
        // note: this can technically panic if the serialized network address
        //       length is > 64 GiB
        let auth_tag = aead
            .encrypt_in_place_detached(nonce_slice, ad_slice, &mut addr_vec)
            .expect("addr.len() must be <= 64 GiB");

        // append the authentication tag
        addr_vec.extend_from_slice(auth_tag.as_slice());

        Ok(Self {
            key_version,
            seq_num,
            enc_addr: addr_vec,
        })
    }

    pub fn decrypt(
        self,
        shared_val_netaddr_key: &Key,
        account: &AccountAddress,
        addr_idx: u32,
    ) -> Result<NetworkAddress, ParseError> {
        let key_version = self.key_version;
        let seq_num = self.seq_num;
        let mut enc_addr = self.enc_addr;

        // ciphertext is too small to even contain the authentication tag, so it
        // must be invalid.
        if enc_addr.len() < AES_GCM_TAG_LEN {
            return Err(ParseError::DecryptError);
        }

        let derived_key = Self::derive_key(shared_val_netaddr_key, account);
        let aead = Aes256Gcm::new(GenericArray::from_slice(&derived_key));

        // nonce := seq_num || addr_idx
        //
        // concatenate seq_num and addr_idx into a 12-byte AES-GCM nonce. both
        // seq_num and addr_idx are big-endian integers.
        //
        // ex: seq_num = 0x1234, addr_idx = 0x04
        //     ==> nonce_slice == &[0, 0, 0, 0, 0, 0, 0x12, 0x34, 0, 0, 0, 0x4]
        let nonce = (((seq_num as u128) << 32) | (addr_idx as u128)).to_be_bytes();
        let nonce_slice = &nonce[mem::size_of::<u128>() - AES_GCM_NONCE_LEN..];
        let nonce_slice = GenericArray::from_slice(nonce_slice);

        // the key_version is in-the-clear, so we include it in the integrity check
        // using the "additional data"
        let ad_buf = key_version.to_be_bytes();
        let ad_slice = &ad_buf[..];

        // split buffer into separate ciphertext and authentication tag slices
        let auth_tag_offset = enc_addr.len() - AES_GCM_TAG_LEN;
        let (enc_addr_slice, auth_tag_slice) = enc_addr.split_at_mut(auth_tag_offset);
        let auth_tag_slice = GenericArray::from_slice(auth_tag_slice);

        aead.decrypt_in_place_detached(nonce_slice, ad_slice, enc_addr_slice, auth_tag_slice)
            .map_err(|_| ParseError::DecryptError)?;

        // remove the auth tag suffix, leaving just the decrypted network address
        enc_addr.truncate(auth_tag_offset);

        bcs::from_bytes(&enc_addr).map_err(|e| e.into())
    }

    /// Given the shared `shared_val_netaddr_key`, derive the per-validator
    /// `derived_key`.
    fn derive_key(shared_val_netaddr_key: &Key, account: &AccountAddress) -> Vec<u8> {
        let salt = Some(HKDF_SALT.as_ref());
        let info = Some(account.as_ref());
        Hkdf::<Sha3_256>::extract_then_expand(salt, shared_val_netaddr_key, info, KEY_LEN).expect(
            "HKDF_SHA3_256 extract_then_expand is infallible here since all inputs \
             have valid and well-defined lengths enforced by the type system",
        )
    }

    pub fn key_version(&self) -> KeyVersion {
        self.key_version
    }

    pub fn seq_num(&self) -> u64 {
        self.seq_num
    }
}

#[cfg(any(test, feature = "fuzzing"))]
impl Arbitrary for EncNetworkAddress {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
        let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
        let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
        let account = AccountAddress::ZERO;
        let seq_num = 0;
        let addr_idx = 0;

        any::<NetworkAddress>()
            .prop_map(move |addr| {
                EncNetworkAddress::encrypt(
                    addr,
                    &shared_val_netaddr_key,
                    key_version,
                    &account,
                    seq_num,
                    addr_idx,
                )
                .unwrap()
            })
            .boxed()
    }
}

///////////
// Tests //
///////////

#[cfg(test)]
mod test {
    use super::*;

    // Ensure that modifying the ciphertext or associated data causes a decryption
    // error.
    #[test]
    fn expect_decryption_failures() {
        let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
        let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
        let account = AccountAddress::ZERO;
        let seq_num = 0x4589;
        let addr_idx = 123;
        let addr = NetworkAddress::mock();
        let enc_addr = addr
            .clone()
            .encrypt(
                &shared_val_netaddr_key,
                key_version,
                &account,
                seq_num,
                addr_idx,
            )
            .unwrap();

        // we expect decrypting a properly encrypted address to work
        let dec_addr = enc_addr
            .clone()
            .decrypt(&shared_val_netaddr_key, &account, addr_idx)
            .unwrap();
        assert_eq!(addr, dec_addr);

        // modifying the seq_num should cause decryption failure
        let mut malicious_enc_addr = enc_addr.clone();
        malicious_enc_addr.seq_num = 1234;
        malicious_enc_addr
            .decrypt(&shared_val_netaddr_key, &account, addr_idx)
            .unwrap_err();

        // modifying the key_version should cause decryption failure
        let mut malicious_enc_addr = enc_addr.clone();
        malicious_enc_addr.key_version = 9999;
        malicious_enc_addr
            .decrypt(&shared_val_netaddr_key, &account, addr_idx)
            .unwrap_err();

        // modifying the auth_tag should cause decryption failure
        let mut malicious_enc_addr = enc_addr.clone();
        let buf = &mut malicious_enc_addr.enc_addr;
        let buf_len = buf.len();
        buf[buf_len - 1] ^= 0x55;
        malicious_enc_addr
            .decrypt(&shared_val_netaddr_key, &account, addr_idx)
            .unwrap_err();

        // modifying the enc_addr ciphertext should cause decryption failure
        let mut malicious_enc_addr = enc_addr.clone();
        malicious_enc_addr.enc_addr = vec![0x42u8; 123];
        malicious_enc_addr
            .decrypt(&shared_val_netaddr_key, &account, addr_idx)
            .unwrap_err();

        // modifying the account address should cause decryption failure
        let malicious_account = AccountAddress::new([0x33; AccountAddress::LENGTH]);
        enc_addr
            .clone()
            .decrypt(&shared_val_netaddr_key, &malicious_account, addr_idx)
            .unwrap_err();

        // modifying the shared_val_netaddr_key should cause decryption failure
        let malicious_shared_val_netaddr_key = [0x88; KEY_LEN];
        enc_addr
            .clone()
            .decrypt(&malicious_shared_val_netaddr_key, &account, addr_idx)
            .unwrap_err();

        // modifying the addr_idx should cause decryption failure
        let malicious_addr_idx = 999;
        enc_addr
            .decrypt(&shared_val_netaddr_key, &account, malicious_addr_idx)
            .unwrap_err();
    }

    proptest! {
        #[test]
        fn encrypt_decrypt_roundtrip(
            addr in any::<NetworkAddress>(),
        ) {
            let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
            let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
            let account = AccountAddress::ZERO;
            let seq_num = 0;
            let addr_idx = 0;
            let enc_addr = addr.clone().encrypt(&shared_val_netaddr_key, key_version, &account, seq_num, addr_idx);
            let dec_addr = enc_addr.unwrap().decrypt(&shared_val_netaddr_key, &account, addr_idx);
            assert_eq!(addr, dec_addr.unwrap());
        }

        #[test]
        fn encrypt_decrypt_roundtrip_all_parameters(
            shared_val_netaddr_key in any::<Key>(),
            key_version in any::<KeyVersion>(),
            account in any::<[u8; AccountAddress::LENGTH]>(),
            seq_num in any::<u64>(),
            addr_idx in any::<u32>(),
            addr in any::<NetworkAddress>(),
        ) {
            let account = AccountAddress::new(account);
            let enc_addr = addr.clone().encrypt(&shared_val_netaddr_key, key_version, &account, seq_num, addr_idx);
            let dec_addr = enc_addr.unwrap().decrypt(&shared_val_netaddr_key, &account, addr_idx);
            assert_eq!(addr, dec_addr.unwrap());
        }
    }
}