1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//! # dfdx
//!
//! dfdx is a cuda accelerated tensor and neural network library, writtten
//! entirely in rust!
//!
//! Additionally, it can track compile time shapes across tensor operations,
//! ensuring that all your neural networks are checked **at compile time**.
//!
//! The following sections provide some high level core concepts & exmaples, and
//! there is more detailed documentation in each of dfdx's submodules.
//!
//! See [feature_flags] for details on feature flags.
//!
//! # Shapes & Tensors
//!
//! *See [dtypes], [shapes], and [tensor] for more information.*
//!
//! At its core a [`tensor::Tensor`] is just a nd-array. Just like
//! rust arrays there are two parts:
//! 1. Shape ([shapes])
//! 2. Dtype ([dtypes])
//!
//! dfdx represents shapes as **tuples** of dimensions ([`shapes::Dim`]),
//! where a dimension can either be known at:
//! 1. Compile time [`shapes::Const<M>`]
//! 2. Run time [`usize`]
//!
//! You can freely mix and match these dimensions together. Here are some
//! example shapes:
//! - `()` - unit shape
//! - `(usize,)` - 1d shape with a runtime known dimension
//! - `(usize, Const<5>)` - 2d shape with both types of dimensions
//! - `(Const<3>, usize, Const<5>)` - 3d shape!
//! - `Rank3<3, 5, 7>` - Equivalent to `(Const<3>, Const<5>, Const<7>)`
//!
//! Here are some comparisons between representing nd arrays in rust vs dfdx:
//!
//! | rust array | dfdx `Tensor` |
//! | --- | --- |
//! | f32 | Tensor<(), f32, ...> |
//! | [u32; 5] | Tensor<Rank1<5>, u32, ...> |
//! | [[u8; 3]; 2] | Tensor<Rank2<2, 3>, u8, ...> |
//! | Vec<[bool; 5]> | Tensor<(usize, Const<5>), bool, ...> |
//!
//! The `Rank1`, `Rank2` shapes used above are actually type aliases for
//! when **all dimensions are compile time**:
//! - [`shapes::Rank0`] is just `()`.
//! - [`shapes::Rank1<M>`] is `(Const<M>, )`
//! - [`shapes::Rank2<M, N>`] is `(Const<M>, Const<N>)`
//!
//! # Allocating tensors with Devices
//!
//! *See [tensor] for more information.*
//!
//! Devices are used to allocate tensors (and neural networks!). They are akin
//! to [std::alloc::GlobalAlloc] in rust - they just allocate memory.
//! They are also used to execute tensor ops, which we will get to later on.
//!
//! There are two options for this currently, with more planned to be added in the future:
//!
//! 1. [tensor::Cpu] - for tensors stored on the heap
//! 2. [tensor::Cuda] - for tensors stored in GPU memory
//!
//! Both devices implement [Default], you can also create them with a certain seed
//! and ordinal.
//!
//! Here's how you might use a device:
//!
//! ```rust
//! # use dfdx::prelude::*;
//! let dev: Cpu = Default::default();
//! let t: Tensor<Rank2<2, 3>, f32, _> = dev.zeros();
//! ```
//!
//! # Tensor Operations (tip of the iceberg)
//!
//! *See [tensor_ops] for more information*
//!
//! Once you've instantiated tensors with a device, you can start doing operations on them!
//! There are **many many** operations, here are a few core ones and how they related
//! to things like numpy/pytorch:
//!
//! | Operation | dfdx | numpy | pytorch |
//! | --- | --- | --- | --- |
//! | Unary Operations | `a.sqrt()` | `a.sqrt()` | `a.sqrt()` |
//! | Binary Operations | `a + b` | `a + b` | `a + b` |
//! | gemm/gemv | [tensor_ops::matmul] | `a @ b` | `a @ b` |
//! | 2d Convolution | [tensor_ops::TryConv2D] | - | `torch.conv2d` |
//! | 2d Transposed Convolution | [tensor_ops::TryConvTrans2D] | - | `torch.conv_transpose2d` |
//! | Slicing | [tensor_ops::slice] | `a[...]` | `a[...]` |
//! | Select | [tensor_ops::SelectTo] | `a[...]` | `torch.select` |
//! | Gather | [tensor_ops::GatherTo] | `np.take` | `torch.gather` |
//! | Broadcasting | [tensor_ops::BroadcastTo] | implicit/`np.broadcast` | implicit/`torch.broadcast_to` |
//! | Permute | [tensor_ops::PermuteTo] | `np.transpose(...)` | `torch.permute` |
//! | Where | [tensor_ops::ChooseFrom] | `np.where` | `torch.where` |
//! | Reshape | [tensor_ops::ReshapeTo] | `np.reshape(shape)` | `a.reshape(shape)` |
//! | View | [tensor_ops::ReshapeTo] | `np.view(...)` | `a.view(...)` |
//! | Roll | [tensor_ops::Roll] | `np.rollaxis(...)` | `a.roll(...)` |
//! | Stack | [tensor_ops::TryStack] | `np.stack` | `torch.stack` |
//! | Concat | [tensor_ops::TryConcat] | `np.concatenate` | `torch.concat` |
//!
//! and **much much more!**
//!
//! # Neural networks
//!
//! *See [nn] for more information.*
//!
//! Neural networks are composed of building blocks that you can chain together. In
//! dfdx, sequential neural networks are represents by **tuples**! For example,
//! the following two networks are identical:
//!
//! | dfdx | pytorch |
//! | --- | --- |
//! | `(Linear<3, 5>, ReLU, Linear<5, 10>)` | `nn.Sequential(nn.Linear(3, 5), nn.ReLU(), nn.Linear(5, 10))` |
//! | `((Conv2D<3, 2, 1>, Tanh), Conv2D<3, 2, 1>)` | `nn.Sequential(nn.Sequential(nn.Conv2d(3, 2, 1), nn.Tanh()), nn.Conv2d(3, 2, 1))`
//!
//! To build a neural network, you of course need a device:
//!
//! ```rust
//! # use dfdx::prelude::*;
//! let dev: Cpu = Default::default();
//! type Model = (Linear<3, 5>, ReLU, Linear<5, 10>);
//! let model = dev.build_module::<Model, f32>();
//! ```
//!
//! Note two things:
//! 1. We are using [nn::DeviceBuildExt] to instantiate the model
//! 2. We **need** to pass a dtype (in this case f32) to create the model.
//!
//! You can then pass tensors into the model with [nn::Module::forward()]:
//!
//! ```rust
//! # use dfdx::prelude::*;
//! # let dev: Cpu = Default::default();
//! # type Model = (Linear<3, 5>, ReLU, Linear<5, 10>);
//! # let model = dev.build_module::<Model, f32>();
//! // tensor with runtime batch dimension of 10
//! let x: Tensor<(usize, Const<3>), f32, _> = dev.sample_normal_like(&(10, Const));
//! let y = model.forward(x);
//! ```
//!
//! # Optimizers and Gradients
//!
//! *See [optim] for more information*
//!
//! dfdx supports a number of the standard optimizers:
//!
//! | Optimizer | dfdx | pytorch |
//! | --- | --- | --- |
//! | SGD | [optim::Sgd] | `torch.optim.SGD` |
//! | Adam | [optim::Adam] | torch.optim.Adam` |
//! | AdamW | [optim::Adam] with [optim::WeightDecay::Decoupled] | `torch.optim.AdamW` |
//! | RMSprop | [optim::RMSprop] | `torch.optim.RMSprop` |
//!
//! You can use optimizers to optimize neural networks (or even tensors!). Here's
//! a simple example of how to do this with [nn::ZeroGrads]:
//! ```rust
//! # use dfdx::{prelude::*, optim::*};
//! # let dev: Cpu = Default::default();
//! type Model = (Linear<3, 5>, ReLU, Linear<5, 10>);
//! let mut model = dev.build_module::<Model, f32>();
//! // 1. allocate gradients for the model
//! let mut grads = model.alloc_grads();
//! // 2. create our optimizer
//! let mut opt = Sgd::new(&model, Default::default());
//! // 3. trace gradients through forward pass
//! let x: Tensor<Rank2<10, 3>, f32, _> = dev.sample_normal();
//! let y = model.forward_mut(x.traced(grads));
//! // 4. compute loss & run backpropagation
//! let loss = y.square().mean();
//! grads = loss.backward();
//! // 5. apply gradients
//! opt.update(&mut model, &grads);
//! ```

#![cfg_attr(all(feature = "no-std", not(feature = "std")), no_std)]
#![allow(incomplete_features)]
#![cfg_attr(feature = "nightly", feature(generic_const_exprs))]

#[cfg(feature = "no-std")]
#[macro_use]
extern crate alloc;
#[cfg(all(feature = "no-std", not(feature = "std")))]
extern crate no_std_compat as std;

pub mod data;
pub mod dtypes;
pub mod feature_flags;
pub mod losses;
pub mod nn;
pub mod optim;
pub mod shapes;
pub mod tensor;
pub mod tensor_ops;

/// Contains subset of all public exports.
pub mod prelude {
    pub use crate::losses::*;
    pub use crate::nn::builders::*;
    pub use crate::optim::prelude::*;
    pub use crate::shapes::*;
    pub use crate::tensor::*;
    pub use crate::tensor_ops::*;
}

/// Sets a CPU `sse` flag to flush denormal floating point numbers to zero. The opposite of this is [keep_denormals()].
///
/// Some resources:
/// 1. [Effects of Flush-To-Zero mode](https://developer.arm.com/documentation/dui0473/c/neon-and-vfp-programming/the-effects-of-using-flush-to-zero-mode?lang=en)
/// 2. [When to use Flush-To-Zero mode](https://developer.arm.com/documentation/dui0473/c/neon-and-vfp-programming/when-to-use-flush-to-zero-mode?lang=en)
pub fn flush_denormals_to_zero() {
    #[cfg(all(target_arch = "x86", target_feature = "sse"))]
    {
        use std::arch::x86::{_MM_FLUSH_ZERO_ON, _MM_SET_FLUSH_ZERO_MODE};
        unsafe { _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON) }
    }

    #[cfg(all(target_arch = "x86_64", target_feature = "sse"))]
    {
        use std::arch::x86_64::{_MM_FLUSH_ZERO_ON, _MM_SET_FLUSH_ZERO_MODE};
        unsafe { _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON) }
    }
}

/// Sets a CPU flag to keep denormal floating point numbers. The opposite of this is [flush_denormals_to_zero()].
///
/// Some resources:
/// 1. [Effects of Flush-To-Zero mode](https://developer.arm.com/documentation/dui0473/c/neon-and-vfp-programming/the-effects-of-using-flush-to-zero-mode?lang=en)
/// 2. [When to use Flush-To-Zero mode](https://developer.arm.com/documentation/dui0473/c/neon-and-vfp-programming/when-to-use-flush-to-zero-mode?lang=en)
pub fn keep_denormals() {
    #[cfg(all(target_arch = "x86", target_feature = "sse"))]
    {
        use std::arch::x86::{_MM_FLUSH_ZERO_OFF, _MM_SET_FLUSH_ZERO_MODE};
        unsafe { _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF) }
    }

    #[cfg(all(target_arch = "x86_64", target_feature = "sse"))]
    {
        use std::arch::x86_64::{_MM_FLUSH_ZERO_OFF, _MM_SET_FLUSH_ZERO_MODE};
        unsafe { _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF) }
    }
}

#[cfg(test)]
pub(crate) mod tests {
    pub use num_traits::{Float, FromPrimitive, NumCast, Zero};

    #[cfg(not(feature = "cuda"))]
    pub type TestDevice = crate::tensor::Cpu;

    #[cfg(feature = "cuda")]
    pub type TestDevice = crate::tensor::Cuda;

    #[cfg(all(feature = "test-f64", feature = "test-f16"))]
    compile_error!("f64 and f16 cannot be tested at the same time");

    #[cfg(all(
        not(feature = "test-amp-f16"),
        not(feature = "test-f16"),
        not(feature = "test-f64")
    ))]
    pub type TestDtype = f32;

    #[cfg(feature = "test-f16")]
    pub type TestDtype = half::f16;

    #[cfg(feature = "test-f64")]
    pub type TestDtype = f64;

    #[cfg(feature = "test-amp-f16")]
    pub type TestDtype = crate::dtypes::AMP<half::f16>;

    pub trait AssertClose {
        type Elem: std::fmt::Display + std::fmt::Debug + Copy;
        const DEFAULT_TOLERANCE: Self::Elem;
        fn get_default_tol(&self) -> Self::Elem {
            Self::DEFAULT_TOLERANCE
        }
        fn get_far_pair(
            &self,
            rhs: &Self,
            tolerance: Self::Elem,
        ) -> Option<(Self::Elem, Self::Elem)>;
        fn assert_close(&self, rhs: &Self, tolerance: Self::Elem)
        where
            Self: std::fmt::Debug,
        {
            if let Some((l, r)) = self.get_far_pair(rhs, tolerance) {
                panic!("lhs != rhs | {l} != {r}\n\n{self:?}\n\n{rhs:?}");
            }
        }
    }

    impl<F: Copy + std::fmt::Debug + std::fmt::Display + AssertClose> AssertClose
        for crate::dtypes::AMP<F>
    {
        type Elem = crate::dtypes::AMP<F::Elem>;
        const DEFAULT_TOLERANCE: Self::Elem = crate::dtypes::AMP(F::DEFAULT_TOLERANCE);
        fn get_far_pair(
            &self,
            rhs: &Self,
            tolerance: Self::Elem,
        ) -> Option<(Self::Elem, Self::Elem)> {
            self.0
                .get_far_pair(&rhs.0, tolerance.0)
                .map(|(l, r)| (crate::dtypes::AMP(l), crate::dtypes::AMP(r)))
        }
    }

    #[cfg(feature = "f16")]
    impl AssertClose for half::f16 {
        type Elem = Self;
        const DEFAULT_TOLERANCE: Self::Elem = half::f16::from_f32_const(1e-2);
        fn get_far_pair(&self, rhs: &Self, tolerance: Self) -> Option<(Self, Self)> {
            if num_traits::Float::abs(self - rhs) > tolerance {
                Some((*self, *rhs))
            } else {
                None
            }
        }
    }

    impl AssertClose for f32 {
        type Elem = f32;
        const DEFAULT_TOLERANCE: Self::Elem = 1e-6;
        fn get_far_pair(&self, rhs: &Self, tolerance: f32) -> Option<(f32, f32)> {
            if (self - rhs).abs() > tolerance {
                Some((*self, *rhs))
            } else {
                None
            }
        }
    }

    impl AssertClose for f64 {
        type Elem = f64;
        const DEFAULT_TOLERANCE: Self::Elem = 1e-6;
        fn get_far_pair(&self, rhs: &Self, tolerance: f64) -> Option<(f64, f64)> {
            if (self - rhs).abs() > tolerance {
                Some((*self, *rhs))
            } else {
                None
            }
        }
    }

    impl<T: AssertClose, const M: usize> AssertClose for [T; M] {
        type Elem = T::Elem;
        const DEFAULT_TOLERANCE: Self::Elem = T::DEFAULT_TOLERANCE;
        fn get_far_pair(
            &self,
            rhs: &Self,
            tolerance: Self::Elem,
        ) -> Option<(Self::Elem, Self::Elem)> {
            for (l, r) in self.iter().zip(rhs.iter()) {
                if let Some(pair) = l.get_far_pair(r, tolerance) {
                    return Some(pair);
                }
            }
            None
        }
    }

    pub trait NdMap {
        type Elem;
        type Mapped<O>;
        fn ndmap<O, F: Copy + FnMut(Self::Elem) -> O>(self, f: F) -> Self::Mapped<O>;
    }

    impl NdMap for f32 {
        type Elem = Self;
        type Mapped<O> = O;
        fn ndmap<O, F: Copy + FnMut(Self::Elem) -> O>(self, mut f: F) -> O {
            f(self)
        }
    }

    impl NdMap for f64 {
        type Elem = Self;
        type Mapped<O> = O;
        fn ndmap<O, F: Copy + FnMut(Self::Elem) -> O>(self, mut f: F) -> O {
            f(self)
        }
    }

    impl<T: NdMap, const M: usize> NdMap for [T; M] {
        type Elem = T::Elem;
        type Mapped<O> = [T::Mapped<O>; M];
        fn ndmap<O, F: Copy + FnMut(Self::Elem) -> O>(self, f: F) -> Self::Mapped<O> {
            self.map(|t| t.ndmap(f))
        }
    }

    macro_rules! assert_close_to_literal {
        ($Lhs:expr, $Rhs:expr) => {{
            let lhs = $Lhs.array();
            let rhs = $Rhs.ndmap(|x| num_traits::FromPrimitive::from_f64(x).unwrap());
            let tol = AssertClose::get_default_tol(&lhs);
            let far_pair = AssertClose::get_far_pair(&lhs, &rhs, tol);
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        }};
        ($Lhs:expr, $Rhs:expr, $Tolerance:expr) => {{
            let far_pair = $Lhs.array().get_far_pair(
                &$Rhs.ndmap(|x| num_traits::FromPrimitive::from_f64(x).unwrap()),
                num_traits::FromPrimitive::from_f64($Tolerance).unwrap(),
            );
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        }};
    }
    pub(crate) use assert_close_to_literal;

    macro_rules! assert_close_to_tensor {
        ($Lhs:expr, $Rhs:expr) => {
            let lhs = $Lhs.array();
            let tol = AssertClose::get_default_tol(&lhs);
            let far_pair = AssertClose::get_far_pair(&lhs, &$Rhs.array(), tol);
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        };
        ($Lhs:expr, $Rhs:expr, $Tolerance:expr) => {{
            let far_pair = $Lhs.array().get_far_pair(
                &$Rhs.array(),
                num_traits::FromPrimitive::from_f64($Tolerance).unwrap(),
            );
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        }};
    }
    pub(crate) use assert_close_to_tensor;

    macro_rules! assert_close {
        ($Lhs:expr, $Rhs:expr) => {
            let lhs = $Lhs;
            let tol = AssertClose::get_default_tol(&lhs);
            let far_pair = AssertClose::get_far_pair(&lhs, &$Rhs, tol);
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        };
        ($Lhs:expr, $Rhs:expr, $Tolerance:expr) => {{
            let far_pair = $Lhs.get_far_pair(
                &$Rhs,
                num_traits::FromPrimitive::from_f64($Tolerance).unwrap(),
            );
            if let Some((l, r)) = far_pair {
                panic!("lhs != rhs | {l} != {r}");
            }
        }};
    }

    pub(crate) use assert_close;
}