1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use crate::prelude::*;
use rand::Rng;

/// **Requires Nightly** A multi-head attention layer.
///
/// # Generics
/// - `M` The embedding size of token vectors from decoder.
/// - `N` The embedding size of token vectors from encoder.
/// - `K` The size of the keys in self attention.
/// - `V` The size of the values.
/// - `H` The number of attention heads.
///
/// # Examples
/// `MultiHeadAttention<8, 10, 10, 10, 2>` is an attention layer with 2 heads and 10 token, key and value dims.
/// TODO: Doctests fail for some reason
#[derive(Debug, Clone, Default)]
pub struct MultiHeadAttention<
    const M: usize,
    const N: usize,
    const K: usize,
    const V: usize,
    const H: usize,
> {
    pub w_q: Linear<M, K>,
    pub w_k: Linear<N, K>,
    pub w_v: Linear<N, V>,
    pub w_o: Linear<V, M>,
}

impl<const M: usize, const N: usize, const K: usize, const V: usize, const H: usize> ResetParams
    for MultiHeadAttention<M, N, K, V, H>
{
    fn reset_params<R: Rng>(&mut self, rng: &mut R) {
        self.w_q.reset_params(rng);
        self.w_k.reset_params(rng);
        self.w_v.reset_params(rng);
        self.w_o.reset_params(rng);
    }
}

impl<const M: usize, const N: usize, const K: usize, const V: usize, const H: usize>
    CanUpdateWithGradients for MultiHeadAttention<M, N, K, V, H>
{
    fn update<G: GradientProvider>(&mut self, grads: &mut G, unused: &mut UnusedTensors) {
        self.w_q.update(grads, unused);
        self.w_k.update(grads, unused);
        self.w_v.update(grads, unused);
        self.w_o.update(grads, unused);
    }
}

impl<
        const M: usize,
        const K: usize,
        const V: usize,
        const S: usize,
        const H: usize,
        T: 'static + Tape,
    > Module<Tensor2D<S, M, T>> for MultiHeadAttention<M, M, K, V, H>
where
    Assert<{ S * K == H * S * (K / H) }>: ConstTrue,
    Assert<{ S * V == H * S * (V / H) }>: ConstTrue,
    Assert<{ H * S * (V / H) == S * V }>: ConstTrue,
{
    type Output = Tensor2D<S, M, T>;

    /// Normal self attention (where same tensors are used for keys, queries and values)
    fn forward(&self, input: Tensor2D<S, M, T>) -> Self::Output {
        let (input, tape) = input.split_tape();

        let values = self.w_v.forward(input.duplicate().put_tape(tape));
        let values = Reshape::<Tensor3D<H, S, { V / H }, T>>::reshape(values);
        let (values, tape) = values.split_tape();

        let keys = self.w_k.forward(input.duplicate().put_tape(tape));
        let keys = Reshape::<Tensor3D<H, S, { K / H }, T>>::reshape(keys);
        let (keys, tape) = keys.split_tape();

        let queries = self.w_q.forward(input.put_tape(tape));
        let queries = Reshape::<Tensor3D<H, S, { K / H }, T>>::reshape(queries);

        // Get weights
        let token_weights = matmul_transpose(queries, &keys) / (M as f32);

        // Softmax on last dimension
        let token_weights: Tensor3D<H, S, S, T> = softmax(token_weights);

        // Get new tokens
        let tokens: Tensor3D<H, S, { V / H }, T> = matmul(token_weights, &values);
        let tokens: Tensor2D<S, V, T> = tokens.reshape();

        self.w_o.forward(tokens)
    }
}

impl<
        const M: usize,
        const N: usize,
        const K: usize,
        const V: usize,
        const S1: usize,
        const S2: usize,
        const H: usize,
        T: 'static + Tape,
    > Module<(Tensor2D<S1, M, T>, Tensor2D<S2, N>)> for MultiHeadAttention<M, N, K, V, H>
where
    Assert<{ S1 * K == H * S1 * (K / H) }>: ConstTrue,
    Assert<{ S2 * K == H * S2 * (K / H) }>: ConstTrue,
    Assert<{ S2 * V == H * S2 * (V / H) }>: ConstTrue,
    Assert<{ H * S1 * (V / H) == S1 * V }>: ConstTrue,
{
    type Output = Tensor2D<S1, M, T>;

    /// Encoder-Decoder style self attention where one set of tensors is used for values and keys, and another is used for queries
    fn forward(&self, (input, from_enc): (Tensor2D<S1, M, T>, Tensor2D<S2, N>)) -> Self::Output {
        let (input, tape) = input.split_tape();

        let values = self.w_v.forward(from_enc.duplicate().put_tape(tape));
        let values = Reshape::<Tensor3D<H, S2, { V / H }, T>>::reshape(values);
        let (values, tape) = values.split_tape();

        let keys = self.w_k.forward(from_enc.put_tape(tape));
        let keys = Reshape::<Tensor3D<H, S2, { K / H }, T>>::reshape(keys);
        let (keys, tape) = keys.split_tape();

        let queries = self.w_q.forward(input.put_tape(tape));
        let queries = Reshape::<Tensor3D<H, S1, { K / H }, T>>::reshape(queries);

        // Get weights
        let token_weights = matmul_transpose(queries, &keys) / (M as f32);

        // Softmax on last dimension
        let token_weights: Tensor3D<H, S1, S2, T> = softmax(token_weights);

        // Get new tokens
        let tokens: Tensor3D<H, S1, { V / H }, T> = matmul(token_weights, &values);
        let tokens: Tensor2D<S1, V, T> = tokens.reshape();

        self.w_o.forward(tokens)
    }
}

impl<
        const B: usize,
        const M: usize,
        const K: usize,
        const V: usize,
        const S: usize,
        const H: usize,
        T: 'static + Tape,
    > Module<Tensor3D<B, S, M, T>> for MultiHeadAttention<M, M, K, V, H>
where
    Assert<{ B * S * K == B * H * S * (K / H) }>: ConstTrue,
    Assert<{ B * S * V == B * H * S * (V / H) }>: ConstTrue,
    Assert<{ B * H * S * (V / H) == B * S * V }>: ConstTrue,
{
    type Output = Tensor3D<B, S, M, T>;

    /// Batched normal self attention (where same tensors are used for keys, queries and values)
    fn forward(&self, input: Tensor3D<B, S, M, T>) -> Self::Output {
        let (input, tape) = input.split_tape();

        let values = self.w_v.forward(input.duplicate().put_tape(tape));
        let values = Reshape::<Tensor4D<B, H, S, { V / H }, T>>::reshape(values);
        let (values, tape) = values.split_tape();

        let keys = self.w_k.forward(input.duplicate().put_tape(tape));
        let keys = Reshape::<Tensor4D<B, H, S, { K / H }, T>>::reshape(keys);
        let (keys, tape) = keys.split_tape();

        let queries = self.w_q.forward(input.put_tape(tape));
        let queries = Reshape::<Tensor4D<B, H, S, { K / H }, T>>::reshape(queries);

        // Get weights
        let token_weights = matmul_transpose(queries, &keys) / (M as f32);

        // Softmax on last dimension
        let token_weights: Tensor4D<B, H, S, S, T> = softmax(token_weights);

        // Get new tokens
        let tokens: Tensor4D<B, H, S, { V / H }, T> = matmul(token_weights, &values);
        let tokens: Tensor3D<B, S, V, T> = tokens.reshape();

        self.w_o.forward(tokens)
    }
}

impl<
        const B: usize,
        const M: usize,
        const N: usize,
        const K: usize,
        const V: usize,
        const S1: usize,
        const S2: usize,
        const H: usize,
        T: 'static + Tape,
    > Module<(Tensor3D<B, S1, M, T>, Tensor3D<B, S2, N>)> for MultiHeadAttention<M, N, K, V, H>
where
    Assert<{ B * S1 * K == B * H * S1 * (K / H) }>: ConstTrue,
    Assert<{ B * S2 * K == B * H * S2 * (K / H) }>: ConstTrue,
    Assert<{ B * S2 * V == B * H * S2 * (V / H) }>: ConstTrue,
    Assert<{ B * H * S1 * (V / H) == B * S1 * V }>: ConstTrue,
{
    type Output = Tensor3D<B, S1, M, T>;

    /// Batched Encoder-Decoder style self attention where one set of tensors is used for values and keys, and another is used for queries
    fn forward(
        &self,
        (input, from_enc): (Tensor3D<B, S1, M, T>, Tensor3D<B, S2, N>),
    ) -> Self::Output {
        let (input, tape) = input.split_tape();

        let values = self.w_v.forward(from_enc.duplicate().put_tape(tape));
        let values = Reshape::<Tensor4D<B, H, S2, { V / H }, T>>::reshape(values);
        let (values, tape) = values.split_tape();

        let keys = self.w_k.forward(from_enc.put_tape(tape));
        let keys = Reshape::<Tensor4D<B, H, S2, { K / H }, T>>::reshape(keys);
        let (keys, tape) = keys.split_tape();

        let queries = self.w_q.forward(input.put_tape(tape));
        let queries = Reshape::<Tensor4D<B, H, S1, { K / H }, T>>::reshape(queries);

        // Get weights
        let token_weights = matmul_transpose(queries, &keys) / (M as f32);

        // Softmax on last dimension
        let token_weights: Tensor4D<B, H, S1, S2, T> = softmax(token_weights);

        // Get new tokens
        let tokens: Tensor4D<B, H, S1, { V / H }, T> = matmul(token_weights, &values);
        let tokens: Tensor3D<B, S1, V, T> = tokens.reshape();

        self.w_o.forward(tokens)
    }
}