1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::arrays::Axis;
use crate::devices::{Cpu, FillElements};
use crate::gradients::{CanUpdateWithGradients, GradientProvider, Tape, UnusedTensors};
use crate::prelude::*;

/// Implements layer normalization as described in [Layer Normalization](https://arxiv.org/abs/1607.06450).
///
/// This calls [normalize()] on the last axis of the input to normalize to 0 mean and unit std dev, and then does an element-wise
/// affine transform using learnable parameters [Self::gamma] and [Self::beta].
///
/// [Self::epsilon] is passed to [normalize()] and added to the variance to ensure big enough numbers. It defaults to `1e-5`.
///
/// # Generics
/// - `M` The size of the affine transform tensors.
///
/// # Examples
/// ```rust
/// # use dfdx::prelude::*;
/// let model: LayerNorm1D<5> = Default::default();
/// let x: Tensor1D<5> = Default::default();
/// let _: Tensor1D<5> = model.forward(x);
/// ```
#[derive(Debug, Clone)]
pub struct LayerNorm1D<const M: usize> {
    pub gamma: Tensor1D<M>,
    pub beta: Tensor1D<M>,
    pub epsilon: f32,
}

impl<const M: usize> Default for LayerNorm1D<M> {
    /// Fills [Self::gamma] with 1s and [Self::beta] with 0s and sets [Self::epsilon] to `1e-5`.
    fn default() -> Self {
        Self {
            gamma: TensorCreator::ones(),
            beta: TensorCreator::zeros(),
            epsilon: 1e-5,
        }
    }
}

impl<const M: usize> ResetParams for LayerNorm1D<M> {
    /// Fills [Self::gamma] with 1s and [Self::beta] with 0s.
    fn reset_params<R: rand::Rng>(&mut self, _: &mut R) {
        Cpu::fill(self.gamma.mut_data(), &mut |v| *v = 1.0);
        Cpu::fill(self.beta.mut_data(), &mut |v| *v = 0.0);
    }
}

impl<const M: usize> CanUpdateWithGradients for LayerNorm1D<M> {
    /// Updates [Self::gamma] and [Self::beta].
    fn update<G: GradientProvider>(&mut self, grads: &mut G, unused: &mut UnusedTensors) {
        self.gamma.update(grads, unused);
        self.beta.update(grads, unused);
    }
}

impl<H: Tape, const M: usize> Module<Tensor1D<M, H>> for LayerNorm1D<M> {
    type Output = Tensor1D<M, H>;

    /// Calls:
    /// 1. [normalize()] with [Self::epsilon]
    /// 2. [mul()] with [Self::gamma]
    /// 3. [add()] with [Self::beta]
    fn forward(&self, x: Tensor1D<M, H>) -> Self::Output {
        let x = x.normalize(self.epsilon);
        let x = mul(x, self.gamma.clone());
        add(x, self.beta.clone())
    }
}

impl<H: Tape, const B: usize, const M: usize> Module<Tensor2D<B, M, H>> for LayerNorm1D<M> {
    type Output = Tensor2D<B, M, H>;

    /// Calls:
    /// 1. [normalize()] with [Self::epsilon].
    /// 2. [mul()] with [Self::gamma]
    /// 3. [add()] with [Self::beta]
    fn forward(&self, x: Tensor2D<B, M, H>) -> Self::Output {
        let g: Self::Output = self.gamma.with_diff_tape().broadcast();
        let b: Self::Output = self.beta.with_diff_tape().broadcast();
        let x = x.normalize::<Axis<1>>(self.epsilon);
        let x = mul(g, x);
        add(x, b)
    }
}

impl<H: Tape, const B: usize, const S: usize, const M: usize> Module<Tensor3D<B, S, M, H>>
    for LayerNorm1D<M>
{
    type Output = Tensor3D<B, S, M, H>;

    /// Calls:
    /// 1. [normalize()] with [Self::epsilon].
    /// 2. [add()] with [Self::gamma]
    /// 3. [add()] with [Self::beta]
    fn forward(&self, x: Tensor3D<B, S, M, H>) -> Self::Output {
        let g: Self::Output = self.gamma.with_diff_tape().broadcast();
        let b: Self::Output = self.beta.with_diff_tape().broadcast();
        let x = x.normalize::<Axis<2>>(self.epsilon);
        let x = mul(g, x);
        add(b, x)
    }
}

impl<T, const M: usize> ModuleMut<T> for LayerNorm1D<M>
where
    Self: Module<T>,
{
    type Output = <Self as Module<T>>::Output;
    fn forward_mut(&mut self, input: T) -> Self::Output {
        self.forward(input)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::unique_id::HasUniqueId;
    use crate::{nn::tests::SimpleGradients, tests::assert_close};
    use rand::{prelude::StdRng, SeedableRng};
    use rand_distr::Standard;

    #[test]
    fn test_layer_norm_reset() {
        let mut m: LayerNorm1D<5> = Default::default();
        assert_eq!(m.gamma.data(), &[1.0; 5]);
        assert_eq!(m.beta.data(), &[0.0; 5]);

        let mut rng = StdRng::seed_from_u64(0);
        m.gamma.randomize(&mut rng, &Standard);
        m.beta.randomize(&mut rng, &Standard);

        assert_ne!(m.gamma.data(), &[1.0; 5]);
        assert_ne!(m.beta.data(), &[0.0; 5]);

        m.reset_params(&mut rng);
        assert_eq!(m.gamma.data(), &[1.0; 5]);
        assert_eq!(m.beta.data(), &[0.0; 5]);
    }

    #[test]
    fn test_layer_norm_1d_forward() {
        let mut rng = StdRng::seed_from_u64(0);
        let mut m: LayerNorm1D<5> = Default::default();
        let x: Tensor1D<5> = TensorCreator::randn(&mut rng);
        let r = m.forward_mut(x.trace());
        assert_close(
            r.data(),
            &[0.873304, 0.9879816, -1.6083492, 0.44028836, -0.6932247],
        );
        let g = backward(r.mean());
        assert_close(
            g.ref_gradient(&m.gamma),
            &[0.1746608, 0.19759633, -0.32166985, 0.088057674, -0.13864495],
        );
        assert_close(g.ref_gradient(&m.beta), &[0.2; 5]);
    }

    #[test]
    fn test_layer_norm_2d_forward() {
        let mut rng = StdRng::seed_from_u64(0);
        let m: LayerNorm1D<5> = Default::default();
        let x: Tensor2D<3, 5> = TensorCreator::randn(&mut rng);
        let r = m.forward(x.trace());
        assert_close(
            r.data(),
            &[
                [0.873304, 0.9879816, -1.6083492, 0.44028836, -0.6932247],
                [0.663322, -1.8449169, 0.05217871, 0.056903206, 1.0725129],
                [1.0343355, -1.5559655, -0.40086073, 1.1405537, -0.21806297],
            ],
        );
        let g = backward(r.mean());
        assert_close(
            g.ref_gradient(&m.gamma),
            &[0.1713974, -0.16086, -0.1304687, 0.109183, 0.0107483],
        );
        assert_close(g.ref_gradient(&m.beta), &[0.2; 5]);
    }

    #[test]
    fn test_layer_norm_missing_gradients() {
        let mut model: LayerNorm1D<5> = Default::default();
        let mut g: SimpleGradients = Default::default();

        // no gradients present
        let mut unused = Default::default();
        model.update(&mut g, &mut unused);
        assert_eq!(&unused.ids, &[*model.gamma.id(), *model.beta.id()]);

        g.0.mut_gradient(&model.gamma);

        // weight gradient is present
        let mut unused = Default::default();
        model.update(&mut g, &mut unused);
        assert_eq!(&unused.ids, &[*model.beta.id()]);

        g.0.mut_gradient(&model.gamma);
        g.0.mut_gradient(&model.beta);

        // all gradients present
        let mut unused = Default::default();
        model.update(&mut g, &mut unused);
        assert!(unused.is_empty());
    }
}