1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use super::BlockCipher;
use byte_tools::{read_u64_be, write_u64_be};
use generic_array::GenericArray;
use generic_array::typenum::{U1, U8};

use core::fmt;

use consts::{SBOXES, SHIFTS};

#[derive(Copy, Clone)]
pub struct Des {
    pub(crate) keys: [u64; 16],
}

/// Swap bits in `a` using a delta swap
fn delta_swap(a: u64, delta: u64, mask: u64) -> u64 {
    let b = (a ^ (a >> delta)) & mask;
    a ^ b ^ (b << delta)
}

/// Swap bits using the PC-1 table
fn pc1(mut key: u64) -> u64 {
    key = delta_swap(key, 2, 0x3333000033330000);
    key = delta_swap(key, 4, 0x0f0f0f0f00000000);
    key = delta_swap(key, 8, 0x009a000a00a200a8);
    key = delta_swap(key, 16, 0x00006c6c0000cccc);
    key = delta_swap(key, 1, 0x1045500500550550);
    key = delta_swap(key, 32, 0x00000000f0f0f5fa);
    key = delta_swap(key, 8, 0x00550055006a00aa);
    key = delta_swap(key, 2, 0x0000333330000300);
    key & 0xFFFFFFFFFFFFFF00
}

/// Swap bits using the PC-2 table
fn pc2(key: u64) -> u64 {
    let key = key.rotate_left(61);
    let b1 = (key & 0x0021000002000000) >> 7;
    let b2 = (key & 0x0008020010080000) << 1;
    let b3 = key & 0x0002200000000000;
    let b4 = (key & 0x0000000000100020) << 19;
    let b5 = (key.rotate_left(54) & 0x0005312400000011)
        .wrapping_mul(0x0000000094200201) & 0xea40100880000000;
    let b6 = (key.rotate_left(7) & 0x0022110000012001)
        .wrapping_mul(0x0001000000610006) & 0x1185004400000000;
    let b7 = (key.rotate_left(6) & 0x0000520040200002)
        .wrapping_mul(0x00000080000000c1) & 0x0028811000200000;
    let b8 = (key & 0x01000004c0011100)
        .wrapping_mul(0x0000000000004284) & 0x0400082244400000;
    let b9 = (key.rotate_left(60) & 0x0000000000820280)
        .wrapping_mul(0x0000000000089001) & 0x0000000110880000;
    let b10 = (key.rotate_left(49) & 0x0000000000024084)
        .wrapping_mul(0x0000000002040005) & 0x000000000a030000;
    b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | b10
}

/// Swap bits using the reverse FP table
fn fp(mut message: u64) -> u64 {
    message = delta_swap(message, 24, 0x000000FF000000FF);
    message = delta_swap(message, 24, 0x00000000FF00FF00);
    message = delta_swap(message, 36, 0x000000000F0F0F0F);
    message = delta_swap(message, 18, 0x0000333300003333);
    delta_swap(message, 9, 0x0055005500550055)
}

/// Swap bits using the IP table
fn ip(mut message: u64) -> u64 {
    message = delta_swap(message, 9, 0x0055005500550055);
    message = delta_swap(message, 18, 0x0000333300003333);
    message = delta_swap(message, 36, 0x000000000F0F0F0F);
    message = delta_swap(message, 24, 0x00000000FF00FF00);
    delta_swap(message, 24, 0x000000FF000000FF)
}

/// Swap bits using the E table
fn e(block: u64) -> u64 {
    const BLOCK_LEN: usize = 32;
    const RESULT_LEN: usize = 48;

    let b1 = (block << (BLOCK_LEN - 1)) & 0x8000000000000000;
    let b2 = (block >> 1) & 0x7C00000000000000;
    let b3 = (block >> 3) & 0x03F0000000000000;
    let b4 = (block >> 5) & 0x000FC00000000000;
    let b5 = (block >> 7) & 0x00003F0000000000;
    let b6 = (block >> 9) & 0x000000FC00000000;
    let b7 = (block >> 11) & 0x00000003F0000000;
    let b8 = (block >> 13) & 0x000000000FC00000;
    let b9 = (block >> 15) & 0x00000000003E0000;
    let b10 = (block >> (RESULT_LEN - 1)) & 0x0000000000010000;
    b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | b10
}

/// Swap bits using the P table
fn p(block: u64) -> u64 {
    let block = block.rotate_left(44);
    let b1 = (block & 0x0000000000200000) << 32;
    let b2 = (block & 0x0000000000480000) << 13;
    let b3 = (block & 0x0000088000000000) << 12;
    let b4 = (block & 0x0000002020120000) << 25;
    let b5 = (block & 0x0000000442000000) << 14;
    let b6 = (block & 0x0000000001800000) << 37;
    let b7 = (block & 0x0000000004000000) << 24;
    let b8 = (block & 0x0000020280015000).wrapping_mul(0x0000020080800083) & 0x02000a6400000000;
    let b9 = (block.rotate_left(29) & 0x01001400000000aa).wrapping_mul(0x0000210210008081) & 0x0902c01200000000;
    let b10 = (block & 0x0000000910040000).wrapping_mul(0x0000000c04000020) & 0x8410010000000000;
    b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | b10
}

/// Generate the 16 subkeys
pub(crate) fn gen_keys(key: u64) -> [u64; 16] {
    let mut keys: [u64; 16] = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    let key = pc1(key);

    // The most significant bit is bit zero, and there are only 56 bits in
    // the key after applying PC1, so we need to remove the eight least
    // significant bits from the key.
    let key = key >> 8;

    let mut c = key >> 28;
    let mut d = key & 0x0FFFFFFF;
    for i in 0..16 {
        c = rotate(c, SHIFTS[i]);
        d = rotate(d, SHIFTS[i]);

        // We need the `<< 8` because the most significant bit is bit zero,
        // so we need to shift our 56 bit value 8 bits to the left.
        keys[i] = pc2(((c << 28) | d) << 8 );
    }

    keys
}

/// Performs a left rotate on a 28 bit number
fn rotate(mut val: u64, shift: u8) -> u64 {
    let top_bits = val >> (28 - shift);
    val <<= shift;

    (val | top_bits) & 0x0FFFFFFF
}

fn round(input: u64, key: u64) -> u64 {
    let l = input & (0xFFFF_FFFF << 32);
    let r = input << 32;

    r | ((f(r, key) ^ l) >> 32)
}

fn f(input: u64, key: u64) -> u64 {
    let mut val = e(input as u64);
    val ^= key;
    val = apply_sboxes(val);
    p(val)
}

/// Applies all eight sboxes to the input
fn apply_sboxes(input: u64) -> u64 {
    let mut output: u64 = 0;
    for i in 0..8 {
        let sbox = SBOXES[i];
        let val = (input >> (58 - (i * 6))) & 0x3F;
        output |= (sbox[val as usize] as u64) << (60 - (i * 4));
    }
    output
}

impl Des {
    pub(crate) fn encrypt(&self, mut data: u64) -> u64 {
        data = ip(data);
        for key in self.keys.iter() {
            data = round(data, *key);
        }
        fp((data << 32) | (data >> 32))
    }

    pub(crate) fn decrypt(&self, mut data: u64) -> u64 {
        data = ip(data);
        for key in self.keys.iter().rev() {
            data = round(data, *key);
        }
        fp((data << 32) | (data >> 32))
    }
}

impl BlockCipher for Des {
    type KeySize = U8;
    type BlockSize = U8;
    type ParBlocks = U1;

    fn new(key: &GenericArray<u8, U8>) -> Self {
        Des { keys: gen_keys(read_u64_be(key)) }
    }

    fn encrypt_block(&self, block: &mut GenericArray<u8, U8>) {
        let data = read_u64_be(block);
        write_u64_be(block, self.encrypt(data));
    }

    fn decrypt_block(&self, block: &mut GenericArray<u8, U8>) {
        let data = read_u64_be(block);
        write_u64_be(block, self.decrypt(data));
    }
}

impl_opaque_debug!(Des);