Derive Macro derive_more::From

source ·
#[derive(From)]
{
    // Attributes available to this derive:
    #[from]
}
Available on crate feature from only.
Expand description

What #[derive(From)] generates

The point of deriving this type is that it makes it easy to create a new instance of the type by using the .into() method on the value(s) that it should contain. This is done by implementing the From trait for the type that is passed to the derive.

Structs

For structs with a single field you can call .into() on the desired content itself after deriving From.

#[derive(Debug, From, PartialEq)]
struct Int(i32);

assert_eq!(Int(2), 2.into());

For structs that have multiple fields .into() needs to be called on a tuple containing the desired content for each field.

#[derive(Debug, From, PartialEq)]
struct Point(i32, i32);

assert_eq!(Point(1, 2), (1, 2).into());

To specify concrete types to derive convert from use #[from(<types>)].

#[derive(Debug, From, PartialEq)]
#[from(Cow<'static, str>, String, &'static str)]
struct Str(Cow<'static, str>);

assert_eq!(Str("&str".into()), "&str".into());
assert_eq!(Str("String".into()), "String".to_owned().into());
assert_eq!(Str("Cow".into()), Cow::Borrowed("Cow").to_owned().into());

#[derive(Debug, From, PartialEq)]
#[from((i16, i16), (i32, i32))]
struct Point {
    x: i32,
    y: i32,
}

assert_eq!(Point { x: 1_i32, y: 2_i32 }, (1_i16, 2_i16).into());
assert_eq!(Point { x: 3_i32, y: 4_i32 }, (3_i32, 4_i32).into());

Also, you can forward implementation to the inner type, which means deriving From for any type, that derives From inner type.

#[derive(Debug, From, PartialEq)]
#[from(forward)]
struct Str {
    inner: Cow<'static, str>,
}

assert_eq!(Str { inner: "&str".into() }, "&str".into());
assert_eq!(Str { inner: "String".into() }, "String".to_owned().into());
assert_eq!(Str { inner: "Cow".into() }, Cow::Borrowed("Cow").to_owned().into());

Enums

For enums .into() works for each variant as if they were structs. This includes specifying concrete types via #[from(<types>)] or forwarding implementation with #[from(forward)].

#[derive(Debug, From, PartialEq)]
enum IntOrPoint {
    Int(i32),
    Point {
        x: i32,
        y: i32,
    },
}

assert_eq!(IntOrPoint::Int(1), 1.into());
assert_eq!(IntOrPoint::Point { x: 1, y: 2 }, (1, 2).into());

By default, From is generated for every enum variant, but you can skip some variants via #[from(skip)] (or #[from(ignore)]) or only concrete fields via #[from].

#[derive(Debug, From, PartialEq)]
enum Int {
    #[from]
    Derived(i32),
    NotDerived(i32),
}

// Is equivalent to:

#[derive(Debug, From, PartialEq)]
enum Int {
    Derived(i32),
    #[from(skip)] // or #[from(ignore)]
    NotDerived(i32),
}

Example usage

// Allow converting from i32
#[derive(From, PartialEq)]
struct MyInt(i32);

// Forward from call to the field, so allow converting
// from anything that can be converted into an i64 (so most integers)
#[derive(From, PartialEq)]
#[from(forward)]
struct MyInt64(i64);

// You can ignore a variant
#[derive(From, PartialEq)]
enum MyEnum {
    SmallInt(i32),
    NamedBigInt { int: i64 },
    #[from(ignore)]
    NoFromImpl(i64),
}

// Or explicitly annotate the ones you need
#[derive(From, PartialEq)]
enum MyEnum2 {
    #[from]
    SmallInt(i32),
    #[from]
    NamedBigInt { int: i64 },
    NoFromImpl(i64),
}

// And even specify additional conversions for them
#[derive(From, PartialEq)]
enum MyEnum3 {
    #[from(i8, i32)]
    SmallInt(i32),
    #[from(i16, i64)]
    NamedBigInt { int: i64 },
    NoFromImpl(i64),
}

assert!(MyInt(2) == 2.into());
assert!(MyInt64(6) == 6u8.into());
assert!(MyEnum::SmallInt(123) == 123i32.into());
assert!(MyEnum::SmallInt(123) != 123i64.into());
assert!(MyEnum::NamedBigInt{int: 123} == 123i64.into());
assert!(MyEnum3::SmallInt(123) == 123i8.into());
assert!(MyEnum3::NamedBigInt{int: 123} == 123i16.into());