1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#![allow(dead_code)]

//! dependent_view is a rust library providing simple wrappers around the `Rc` and `Arc` types, imbuing them with the capability to provide "views" of non-owned structs to separate components of a system. 
//! 
//! ## Usage
//! Add this to your `Cargo.toml`
//! ```ignore,text
//! [dependencies]
//! dependent_view="1"
//! ```
//! and this to your crate root:
//! ```ignore
//! #[macro_use]
//! extern crate dependent_view;
//! ```
//! 
//! The library provides two main structs `DependentRc` and `DependentArc` for normal and thread-safe views.
//!
//! These change the result of the view type (between `std::rc::Weak` or `std::sync::Weak`).
//! 
//! To obtain a `Weak<Trait>` from a dependent struct, use the macros `to_view!()` or `to_view_sync()` respectively.
//! 
//! The compiler will check at compile time that the type `T` within `DependentRc<T>` impl's the trait you want to obtain a view for. 
//! 
//! These dependent types provide a different kind of ownership delegation as compared to standard `Rc`'s or `Box`'s.
//! 
//! A `DependentRc` should be viewed as the single owner of it's contained type, however unlike a `Box`, it allows users to generate multiple runtime managed `Weak<Trait>` references to the object (for each `Trait` impl'd by the contained entity) - these `Weak` references cease to be upgradable once the source `DependantRc` is dropped.
//! 
//! 
//! ## Example
//! Assume we have the following traits:
//! ```
//! trait Dance {
//!     fn dance(&self);
//! }
//! 
//! trait Prance {
//!     fn prance(&self);
//! }
//! ```
//! and some structs which impl the traits:
//! ```
//! # trait Dance {
//! #    fn dance(&self);
//! # }
//! # trait Prance {
//! #     fn prance(&self);
//! # }
//! struct Dancer {id: usize}
//! impl Dance for Dancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! impl Prance for Dancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! 
//! struct Prancer {id: usize}
//! impl Dance for Prancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! impl Prance for Prancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! ```
//! We can create `DependentRc` using the new function:
//! ```
//! # #[macro_use] extern crate dependent_view;
//! use dependent_view::rc::*;
//! # trait Dance {
//! #    fn dance(&self);
//! # }
//! # trait Prance {
//! #     fn prance(&self);
//! # }
//! # struct Dancer {id: usize}
//! # impl Dance for Dancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Dancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! # struct Prancer {id: usize}
//! # impl Dance for Prancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Prancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! let mut dancer = DependentRc::new(Dancer { id: 0 });
//! let mut prancer = DependentRc::new(Prancer { id: 0 });
//! ```
//! 
//! We can use these `DependentRc`'s to create non-owned views of our structs:
//! 
//! ```
//! # #[macro_use] extern crate dependent_view;
//! # use std::rc::Weak;
//! # use dependent_view::rc::*;
//! # trait Dance {
//! #    fn dance(&self);
//! # }
//! # trait Prance {
//! #     fn prance(&self);
//! # }
//! # struct Dancer {id: usize}
//! # impl Dance for Dancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Dancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! # struct Prancer {id: usize}
//! # impl Dance for Prancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Prancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! # let mut dancer = DependentRc::new(Dancer { id: 0 });
//! # let mut prancer = DependentRc::new(Prancer { id: 0 });
//! let dancer_dance_view : Weak<Dance> = to_view!(dancer);
//! let dancer_prance_view : Weak<Prance> = to_view!(dancer);
//! 
//! let prancer_dance_view : Weak<Dance> = to_view!(prancer);
//! let prancer_prance_view : Weak<Prance> = to_view!(prancer);
//! ```
//! 
//! We can then share these views to other components, and not have to worry about managing their deletion:
//! ```
//! # #[macro_use] extern crate dependent_view;
//! # use dependent_view::rc::DependentRc;
//! # use std::rc::{Rc, Weak};
//! # trait Dance {
//! #    fn dance(&self);
//! # }
//! # trait Prance {
//! #     fn prance(&self);
//! # }
//! # struct Dancer {id: usize}
//! # impl Dance for Dancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Dancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! # struct Prancer {id: usize}
//! # impl Dance for Prancer {fn dance(&self) {println!("D{:?}", self.id);}}
//! # impl Prance for Prancer {fn prance(&self)  {println!("P{:?}", self.id);}}
//! # pub fn main() {
//! let mut dancers : Vec<Weak<Dance>> = Vec::new();
//! let mut prancers : Vec<Weak<Prance>> = Vec::new();
//! 
//! {
//!     let mut dancer = DependentRc::new(Dancer { id: 0 });
//!     let mut prancer = DependentRc::new(Prancer { id: 0 });
//! 
//!     dancers.push(to_view!(dancer));
//!     prancers.push(to_view!(dancer));
//!     dancers.push(to_view!(prancer));
//!     prancers.push(to_view!(prancer));
//! 
//!     for (dancer_ref, prancer_ref) in dancers.iter().zip(prancers.iter()) {
//!         dancer_ref.upgrade().unwrap().dance(); 
//!         prancer_ref.upgrade().unwrap().prance(); 
//!     }
//! 
//!     // at this point, dancer and prancer are dropped, invalidating the views
//! }
//! 
//! 
//! for (dancer_ref, prancer_ref) in dancers.iter().zip(prancers.iter()) {
//!     assert!(dancer_ref.upgrade().is_none());
//!     assert!(prancer_ref.upgrade().is_none());
//! }
//! # }
//! ```
//! Also, it is a compile time error to attempt to produce a trait view of a struct when the underlying struct doesn't implement the trait:
//! ```ignore
//! struct Bad { id: usize }
//! let bad = DependentRc::new(Bad { id: 0 });
//! let bad_view : Weak<Dance> = to_view!(bad); // compile time error
//! ```
//! See [`example.rs`](https://github.com/Gopiandcode/dependent-view/blob/master/example.rs) for the full source.
//!
//! Due to the way the internals work, if the compiler can not infer the type of the result of `to_view!`,
//! it complains about `std::mem::transmute` being called on types of different sizes. This usually only
//! happens if you don't actually use the view - and can often be avoided by simply adding type annotations.


#[macro_use]
pub mod rc;


#[macro_use]
pub mod arc;


fn push_ref<T>(items: &mut Vec<T>, value: T) -> &T {
    items.push(value);
    &items[items.len() - 1]
}