1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.

use crate::error::AnyError;
use crate::futures::future::FutureExt;
use crate::BufVec;
use crate::Op;
use crate::OpFn;
use crate::OpState;
use crate::ZeroCopyBuf;
use std::boxed::Box;
use std::cell::RefCell;
use std::convert::TryInto;
use std::future::Future;
use std::rc::Rc;

#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RequestHeader {
  pub request_id: u64,
  pub argument: u32,
}

impl RequestHeader {
  pub fn from_raw(bytes: &[u8]) -> Option<Self> {
    if bytes.len() < 3 * 4 {
      return None;
    }

    Some(Self {
      request_id: u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
      argument: u32::from_le_bytes(bytes[8..12].try_into().unwrap()),
    })
  }
}

#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ResponseHeader {
  pub request_id: u64,
  pub status: u32,
  pub result: u32,
}

impl Into<[u8; 16]> for ResponseHeader {
  fn into(self) -> [u8; 16] {
    let mut resp_header = [0u8; 16];
    resp_header[0..8].copy_from_slice(&self.request_id.to_le_bytes());
    resp_header[8..12].copy_from_slice(&self.status.to_le_bytes());
    resp_header[12..16].copy_from_slice(&self.result.to_le_bytes());
    resp_header
  }
}

pub trait ValueOrVector {
  fn value(&self) -> u32;
  fn vector(self) -> Option<Vec<u8>>;
}

impl ValueOrVector for Vec<u8> {
  fn value(&self) -> u32 {
    self.len() as u32
  }
  fn vector(self) -> Option<Vec<u8>> {
    Some(self)
  }
}

impl ValueOrVector for u32 {
  fn value(&self) -> u32 {
    *self
  }
  fn vector(self) -> Option<Vec<u8>> {
    None
  }
}

fn gen_padding_32bit(len: usize) -> &'static [u8] {
  &[b' ', b' ', b' '][0..(4 - (len & 3)) & 3]
}

/// Creates an op that passes data synchronously using raw ui8 buffer.
///
/// The provided function `op_fn` has the following parameters:
/// * `&mut OpState`: the op state, can be used to read/write resources in the runtime from an op.
/// * `argument`: the i32 value that is passed to the Rust function.
/// * `&mut [ZeroCopyBuf]`: raw bytes passed along.
///
/// `op_fn` returns an array buffer value, which is directly returned to JavaScript.
///
/// When registering an op like this...
/// ```ignore
/// let mut runtime = JsRuntime::new(...);
/// runtime.register_op("hello", deno_core::bin_op_sync(Self::hello_op));
/// ```
///
/// ...it can be invoked from JS using the provided name, for example:
/// ```js
/// Deno.core.ops();
/// let result = Deno.core.binOpSync("function_name", args);
/// ```
///
/// The `Deno.core.ops()` statement is needed once before any op calls, for initialization.
/// A more complete example is available in the examples directory.
pub fn bin_op_sync<F, R>(op_fn: F) -> Box<OpFn>
where
  F: Fn(&mut OpState, u32, &mut [ZeroCopyBuf]) -> Result<R, AnyError> + 'static,
  R: ValueOrVector,
{
  Box::new(move |state: Rc<RefCell<OpState>>, bufs: BufVec| -> Op {
    let mut bufs_iter = bufs.into_iter();
    let record_buf = bufs_iter.next().expect("Expected record at position 0");
    let mut zero_copy = bufs_iter.collect::<BufVec>();

    let req_header = match RequestHeader::from_raw(&record_buf) {
      Some(r) => r,
      None => {
        let error_class = b"TypeError";
        let error_message = b"Unparsable control buffer";
        let len = error_class.len() + error_message.len();
        let padding = gen_padding_32bit(len);
        let resp_header = ResponseHeader {
          request_id: 0,
          status: 1,
          result: error_class.len() as u32,
        };
        return Op::Sync(
          error_class
            .iter()
            .chain(error_message.iter())
            .chain(padding)
            .chain(&Into::<[u8; 16]>::into(resp_header))
            .cloned()
            .collect(),
        );
      }
    };

    match op_fn(&mut state.borrow_mut(), req_header.argument, &mut zero_copy) {
      Ok(possibly_vector) => {
        let resp_header = ResponseHeader {
          request_id: req_header.request_id,
          status: 0,
          result: possibly_vector.value(),
        };
        let resp_encoded_header = Into::<[u8; 16]>::into(resp_header);

        let resp_vector = match possibly_vector.vector() {
          Some(mut vector) => {
            let padding = gen_padding_32bit(vector.len());
            vector.extend(padding);
            vector.extend(&resp_encoded_header);
            vector
          }
          None => resp_encoded_header.to_vec(),
        };
        Op::Sync(resp_vector.into_boxed_slice())
      }
      Err(error) => {
        let error_class =
          (state.borrow().get_error_class_fn)(&error).as_bytes();
        let error_message = error.to_string().as_bytes().to_owned();
        let len = error_class.len() + error_message.len();
        let padding = gen_padding_32bit(len);
        let resp_header = ResponseHeader {
          request_id: req_header.request_id,
          status: 1,
          result: error_class.len() as u32,
        };
        return Op::Sync(
          error_class
            .iter()
            .chain(error_message.iter())
            .chain(padding)
            .chain(&Into::<[u8; 16]>::into(resp_header))
            .cloned()
            .collect(),
        );
      }
    }
  })
}

/// Creates an op that passes data asynchronously using raw ui8 buffer.
///
/// The provided function `op_fn` has the following parameters:
/// * `Rc<RefCell<OpState>>`: the op state, can be used to read/write resources in the runtime from an op.
/// * `argument`: the i32 value that is passed to the Rust function.
/// * `BufVec`: raw bytes passed along, usually not needed if the JSON value is used.
///
/// `op_fn` returns a future, whose output is a JSON value. This value will be asynchronously
/// returned to JavaScript.
///
/// When registering an op like this...
/// ```ignore
/// let mut runtime = JsRuntime::new(...);
/// runtime.register_op("hello", deno_core::json_op_async(Self::hello_op));
/// ```
///
/// ...it can be invoked from JS using the provided name, for example:
/// ```js
/// Deno.core.ops();
/// let future = Deno.core.jsonOpAsync("function_name", args);
/// ```
///
/// The `Deno.core.ops()` statement is needed once before any op calls, for initialization.
/// A more complete example is available in the examples directory.
pub fn bin_op_async<F, R, RV>(op_fn: F) -> Box<OpFn>
where
  F: Fn(Rc<RefCell<OpState>>, u32, BufVec) -> R + 'static,
  R: Future<Output = Result<RV, AnyError>> + 'static,
  RV: ValueOrVector,
{
  Box::new(move |state: Rc<RefCell<OpState>>, bufs: BufVec| -> Op {
    let mut bufs_iter = bufs.into_iter();
    let record_buf = bufs_iter.next().expect("Expected record at position 0");
    let zero_copy = bufs_iter.collect::<BufVec>();

    let req_header = match RequestHeader::from_raw(&record_buf) {
      Some(r) => r,
      None => {
        let error_class = b"TypeError";
        let error_message = b"Unparsable control buffer";
        let len = error_class.len() + error_message.len();
        let padding = gen_padding_32bit(len);
        let resp_header = ResponseHeader {
          request_id: 0,
          status: 1,
          result: error_class.len() as u32,
        };
        return Op::Sync(
          error_class
            .iter()
            .chain(error_message.iter())
            .chain(padding)
            .chain(&Into::<[u8; 16]>::into(resp_header))
            .cloned()
            .collect(),
        );
      }
    };

    let fut =
      op_fn(state.clone(), req_header.argument, zero_copy).map(move |result| {
        match result {
          Ok(possibly_vector) => {
            let resp_header = ResponseHeader {
              request_id: req_header.request_id,
              status: 0,
              result: possibly_vector.value(),
            };
            let resp_encoded_header = Into::<[u8; 16]>::into(resp_header);

            let resp_vector = match possibly_vector.vector() {
              Some(mut vector) => {
                let padding = gen_padding_32bit(vector.len());
                vector.extend(padding);
                vector.extend(&resp_encoded_header);
                vector
              }
              None => resp_encoded_header.to_vec(),
            };
            resp_vector.into_boxed_slice()
          }
          Err(error) => {
            let error_class =
              (state.borrow().get_error_class_fn)(&error).as_bytes();
            let error_message = error.to_string().as_bytes().to_owned();
            let len = error_class.len() + error_message.len();
            let padding = gen_padding_32bit(len);
            let resp_header = ResponseHeader {
              request_id: req_header.request_id,
              status: 1,
              result: error_class.len() as u32,
            };

            error_class
              .iter()
              .chain(error_message.iter())
              .chain(padding)
              .chain(&Into::<[u8; 16]>::into(resp_header))
              .cloned()
              .collect()
          }
        }
      });
    let temp = Box::pin(fut);
    Op::Async(temp)
  })
}

#[cfg(test)]
mod tests {
  use super::*;

  #[test]
  fn padding() {
    assert_eq!(gen_padding_32bit(0), &[] as &[u8]);
    assert_eq!(gen_padding_32bit(1), &[b' ', b' ', b' ']);
    assert_eq!(gen_padding_32bit(2), &[b' ', b' ']);
    assert_eq!(gen_padding_32bit(3), &[b' ']);
    assert_eq!(gen_padding_32bit(4), &[] as &[u8]);
    assert_eq!(gen_padding_32bit(5), &[b' ', b' ', b' ']);
  }

  #[test]
  fn response_header_to_bytes() {
    // Max size of an js Number is 1^53 - 1, so use this value as max for 64bit ´request_id´
    let resp_header = ResponseHeader {
      request_id: 0x0102030405060708u64,
      status: 0x090A0B0Cu32,
      result: 0x0D0E0F10u32,
    };

    // All numbers are always little-endian encoded, as the js side also wants this to be fixed
    assert_eq!(
      &Into::<[u8; 16]>::into(resp_header),
      &[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 16, 15, 14, 13]
    );
  }

  #[test]
  fn response_header_to_bytes_max_value() {
    // Max size of an js Number is 1^53 - 1, so use this value as max for 64bit ´request_id´
    let resp_header = ResponseHeader {
      request_id: (1u64 << 53u64) - 1u64,
      status: 0xFFFFFFFFu32,
      result: 0xFFFFFFFFu32,
    };

    // All numbers are always little-endian encoded, as the js side also wants this to be fixed
    assert_eq!(
      &Into::<[u8; 16]>::into(resp_header),
      &[
        255, 255, 255, 255, 255, 255, 31, 0, 255, 255, 255, 255, 255, 255, 255,
        255
      ]
    );
  }

  #[test]
  fn request_header_from_bytes() {
    let req_header =
      RequestHeader::from_raw(&[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9])
        .unwrap();

    assert_eq!(req_header.request_id, 0x0102030405060708u64);
    assert_eq!(req_header.argument, 0x090A0B0Cu32);
  }

  #[test]
  fn request_header_from_bytes_max_value() {
    let req_header = RequestHeader::from_raw(&[
      255, 255, 255, 255, 255, 255, 31, 0, 255, 255, 255, 255,
    ])
    .unwrap();

    assert_eq!(req_header.request_id, (1u64 << 53u64) - 1u64);
    assert_eq!(req_header.argument, 0xFFFFFFFFu32);
  }

  #[test]
  fn request_header_from_bytes_too_short() {
    let req_header =
      RequestHeader::from_raw(&[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10]);

    assert_eq!(req_header, None);
  }

  #[test]
  fn request_header_from_bytes_long() {
    let req_header = RequestHeader::from_raw(&[
      8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21,
    ])
    .unwrap();

    assert_eq!(req_header.request_id, 0x0102030405060708u64);
    assert_eq!(req_header.argument, 0x090A0B0Cu32);
  }
}