1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.

use crate::error::type_error;
use crate::gotham_state::GothamState;
use crate::ops_metrics::OpsTracker;
use crate::resources::ResourceTable;
use crate::runtime::GetErrorClassFn;
use anyhow::Error;
use futures::future::maybe_done;
use futures::future::FusedFuture;
use futures::future::MaybeDone;
use futures::ready;
use futures::task::noop_waker;
use futures::Future;
use indexmap::IndexMap;
use serde::de::DeserializeOwned;
use serde::Serialize;
use std::cell::RefCell;
use std::iter::once;
use std::ops::Deref;
use std::ops::DerefMut;
use std::pin::Pin;
use std::rc::Rc;
use std::task::Context;
use std::task::Poll;

/// Wrapper around a Future, which causes that Future to be polled immediately.
/// (Background: ops are stored in a `FuturesUnordered` structure which polls
/// them, but without the `OpCall` wrapper this doesn't happen until the next
/// turn of the event loop, which is too late for certain ops.)
pub struct OpCall<T>(MaybeDone<Pin<Box<dyn Future<Output = T>>>>);

impl<T> OpCall<T> {
  /// Wraps a future, and polls the inner future immediately.
  /// This should be the default choice for ops.
  pub fn eager(fut: impl Future<Output = T> + 'static) -> Self {
    let boxed = Box::pin(fut) as Pin<Box<dyn Future<Output = T>>>;
    let mut inner = maybe_done(boxed);
    let waker = noop_waker();
    let mut cx = Context::from_waker(&waker);
    let mut pinned = Pin::new(&mut inner);
    let _ = pinned.as_mut().poll(&mut cx);
    Self(inner)
  }

  /// Wraps a future; the inner future is polled the usual way (lazily).
  pub fn lazy(fut: impl Future<Output = T> + 'static) -> Self {
    let boxed = Box::pin(fut) as Pin<Box<dyn Future<Output = T>>>;
    let inner = maybe_done(boxed);
    Self(inner)
  }

  /// Create a future by specifying its output. This is basically the same as
  /// `async { value }` or `futures::future::ready(value)`.
  pub fn ready(value: T) -> Self {
    Self(MaybeDone::Done(value))
  }
}

impl<T> Future for OpCall<T> {
  type Output = T;

  fn poll(
    self: std::pin::Pin<&mut Self>,
    cx: &mut std::task::Context<'_>,
  ) -> std::task::Poll<Self::Output> {
    let inner = unsafe { &mut self.get_unchecked_mut().0 };
    let mut pinned = Pin::new(inner);
    ready!(pinned.as_mut().poll(cx));
    Poll::Ready(pinned.as_mut().take_output().unwrap())
  }
}

impl<F> FusedFuture for OpCall<F>
where
  F: Future,
{
  fn is_terminated(&self) -> bool {
    self.0.is_terminated()
  }
}

pub type PromiseId = u64;
pub type OpAsyncFuture = OpCall<(PromiseId, OpId, OpResult)>;
pub type OpFn = dyn Fn(Rc<RefCell<OpState>>, OpPayload) -> Op + 'static;
pub type OpId = usize;

pub struct OpPayload<'a, 'b, 'c> {
  pub(crate) scope: &'a mut v8::HandleScope<'b>,
  pub(crate) a: v8::Local<'c, v8::Value>,
  pub(crate) b: v8::Local<'c, v8::Value>,
  pub(crate) op_id: OpId,
  pub(crate) promise_id: PromiseId,
}

impl<'a, 'b, 'c> OpPayload<'a, 'b, 'c> {
  pub fn deserialize<T: DeserializeOwned, U: DeserializeOwned>(
    self,
  ) -> Result<(T, U), Error> {
    let a: T = serde_v8::from_v8(self.scope, self.a)
      .map_err(Error::from)
      .map_err(|e| type_error(format!("Error parsing args: {}", e)))?;

    let b: U = serde_v8::from_v8(self.scope, self.b)
      .map_err(Error::from)
      .map_err(|e| type_error(format!("Error parsing args: {}", e)))?;
    Ok((a, b))
  }
}

pub enum Op {
  Sync(OpResult),
  Async(OpAsyncFuture),
  /// AsyncUnref is the variation of Async, which doesn't block the program
  /// exiting.
  AsyncUnref(OpAsyncFuture),
  NotFound,
}

pub enum OpResult {
  Ok(serde_v8::SerializablePkg),
  Err(OpError),
}

impl OpResult {
  pub fn to_v8<'a>(
    &self,
    scope: &mut v8::HandleScope<'a>,
  ) -> Result<v8::Local<'a, v8::Value>, serde_v8::Error> {
    match self {
      Self::Ok(x) => x.to_v8(scope),
      Self::Err(err) => serde_v8::to_v8(scope, err),
    }
  }
}

#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
pub struct OpError {
  #[serde(rename = "$err_class_name")]
  class_name: &'static str,
  message: String,
  code: Option<&'static str>,
}

pub fn serialize_op_result<R: Serialize + 'static>(
  result: Result<R, Error>,
  state: Rc<RefCell<OpState>>,
) -> OpResult {
  match result {
    Ok(v) => OpResult::Ok(v.into()),
    Err(err) => OpResult::Err(OpError {
      class_name: (state.borrow().get_error_class_fn)(&err),
      message: err.to_string(),
      code: crate::error_codes::get_error_code(&err),
    }),
  }
}

/// Maintains the resources and ops inside a JS runtime.
pub struct OpState {
  pub resource_table: ResourceTable,
  pub op_table: OpTable,
  pub get_error_class_fn: GetErrorClassFn,
  pub(crate) tracker: OpsTracker,
  gotham_state: GothamState,
}

impl OpState {
  pub(crate) fn new() -> OpState {
    OpState {
      resource_table: Default::default(),
      op_table: OpTable::default(),
      get_error_class_fn: &|_| "Error",
      tracker: OpsTracker {
        ops: RefCell::new(Vec::with_capacity(256)),
      },
      gotham_state: Default::default(),
    }
  }
}

impl Deref for OpState {
  type Target = GothamState;

  fn deref(&self) -> &Self::Target {
    &self.gotham_state
  }
}

impl DerefMut for OpState {
  fn deref_mut(&mut self) -> &mut Self::Target {
    &mut self.gotham_state
  }
}

/// Collection for storing registered ops. The special 'get_op_catalog'
/// op with OpId `0` is automatically added when the OpTable is created.
pub struct OpTable(IndexMap<String, Rc<OpFn>>);

impl OpTable {
  pub fn register_op<F>(&mut self, name: &str, op_fn: F) -> OpId
  where
    F: Fn(Rc<RefCell<OpState>>, OpPayload) -> Op + 'static,
  {
    let (op_id, prev) = self.0.insert_full(name.to_owned(), Rc::new(op_fn));
    assert!(prev.is_none());
    op_id
  }

  pub fn op_entries(state: Rc<RefCell<OpState>>) -> Vec<(String, OpId)> {
    state.borrow().op_table.0.keys().cloned().zip(0..).collect()
  }

  pub fn route_op(
    op_id: OpId,
    state: Rc<RefCell<OpState>>,
    payload: OpPayload,
  ) -> Op {
    let op_fn = state
      .borrow()
      .op_table
      .0
      .get_index(op_id)
      .map(|(_, op_fn)| op_fn.clone());
    match op_fn {
      Some(f) => (f)(state, payload),
      None => Op::NotFound,
    }
  }
}

impl Default for OpTable {
  fn default() -> Self {
    fn dummy(_state: Rc<RefCell<OpState>>, _p: OpPayload) -> Op {
      unreachable!()
    }
    Self(once(("ops".to_owned(), Rc::new(dummy) as _)).collect())
  }
}

#[cfg(test)]
mod tests {
  use super::*;

  #[test]
  fn op_table() {
    let state = Rc::new(RefCell::new(OpState::new()));

    let foo_id;
    let bar_id;
    {
      let op_table = &mut state.borrow_mut().op_table;
      foo_id =
        op_table.register_op("foo", |_, _| Op::Sync(OpResult::Ok(321.into())));
      assert_eq!(foo_id, 1);
      bar_id =
        op_table.register_op("bar", |_, _| Op::Sync(OpResult::Ok(123.into())));
      assert_eq!(bar_id, 2);
    }

    let mut catalog_entries = OpTable::op_entries(state);
    catalog_entries.sort_by(|(_, id1), (_, id2)| id1.partial_cmp(id2).unwrap());
    assert_eq!(
      catalog_entries,
      vec![
        ("ops".to_owned(), 0),
        ("foo".to_owned(), 1),
        ("bar".to_owned(), 2)
      ]
    );
  }
}