1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//! Calculate Delta E (color difference) between two colors in CIE Lab space.
//! 
//! # Examples
//! 
//! ```
//! extern crate deltae;
//! use deltae::{DeltaE, DEMethod::DE2000};
//! use deltae::color::LabValue;
//! use std::str::FromStr;
//!
//! fn main() {
//!     let lab0 = LabValue::from_str("89.73, 1.88, -6.96").unwrap();
//!     let lab1 = LabValue {
//!         l: 95.08,
//!         a: -0.17,
//!         b: -10.81,
//!     };
//!
//!     println!("{}", lab0); // [L:89.73, a:1.88, b:-6.96]
//!
//!     let de0 = DeltaE::new(&lab0, &lab1, DE2000).round_to(4);
//!
//!     println!("{}: {}", de0.method, de0.value); // DE2000: 5.3169
//!
//!     let de1 = DeltaE::from(
//!         "89.73, 1.88, -6.96",
//!         "95.08, -0.17, -10.81",
//!         "DE2000"
//!     ).unwrap();
//!
//!     assert_eq!(de0, de1.round_to(4));
//!
//!     let lch0 = lab0.to_lch();
//!     let lab2 = lch0.to_lab();
//!
//!     println!("{}", lch0); // [L:89.73, c:7.2094, h:285.1157]
//!
//!     assert_eq!(lab0.round_to(4), lab2.round_to(4));
//! }
//! ```

use std::fmt;
pub use std::str::FromStr;

pub mod color;
use color::*;

#[cfg(test)]
mod tests;

#[derive(Debug, PartialEq, Clone)]
pub struct DeltaE {
    pub method: DEMethod,
    pub value: f64,
    pub color0: LabValue,
    pub color1: LabValue,
}

impl DeltaE {
    pub fn new(lab_0: &LabValue, lab_1: &LabValue, method: DEMethod) -> DeltaE {
    //! New `DeltaE` from `LabValues` and `DEMethod`.
        let value = match method {
            DEMethod::DE2000  => delta_e_2000(lab_0, lab_1),
            DEMethod::DE1994  => delta_e_1994(lab_0, lab_1, false),
            DEMethod::DE1994T => delta_e_1994(lab_0, lab_1, true),
            DEMethod::DE1976  => delta_e_1976(lab_0, lab_1),
            DEMethod::DECMC1  => delta_e_cmc(lab_0, lab_1, 1.0, 1.0),
            DEMethod::DECMC2  => delta_e_cmc(lab_0, lab_1, 2.0, 1.0),
        };

        let color0 = lab_0.to_owned();
        let color1 = lab_1.to_owned();

        DeltaE { method, value, color0, color1 }
    }

    pub fn round_to(&self, places: i32) -> Self {
        //! Round `DeltaE` value and its components to nearest decimal places
        Self {
            method: self.method.clone(),
            value: round_to(self.value, places),
            color0: self.color0.round_to(places),
            color1: self.color1.round_to(places)
        }.clone()
    }

    pub fn from(color_0: &str, color_1: &str, method: &str) -> ValueResult<DeltaE> {
        //! Parse `DeltaE` from `&str`'s
        let lab_0 = LabValue::from_str(color_0)?;
        let lab_1 = LabValue::from_str(color_1)?;
        let meth = DEMethod::from_str(method).unwrap();

        let de = DeltaE::new(&lab_0, &lab_1, meth);

        Ok(de)
    }
}

impl fmt::Display for DeltaE {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", &self.value)
    }
}

fn round_to(val: f64, places: i32) -> f64 {
    let mult = 10_f64.powi(places);
    (val * mult).round() / mult
}

#[derive(Debug, PartialEq, Clone, Copy)]
pub enum DEMethod{
    DE2000,
    DE1994,
    DE1994T,
    DE1976,
    DECMC1,
    DECMC2,
}

impl Default for DEMethod {
    fn default() -> DEMethod {
        DEMethod::DE2000
    }
}

impl FromStr for DEMethod {
    type Err = std::io::Error;
    fn from_str(s: &str) -> Result<DEMethod, Self::Err> {
        //! Parse `DEMethod` from `&str`. Always returns `Ok()`. DE2000 is default.
        match s.to_lowercase().as_ref() {
            "de2000"  | "de00"  | "2000"  | "00"  => Ok(DEMethod::DE2000),
            "de1976"  | "de76"  | "1976"  | "76"  => Ok(DEMethod::DE1976),
            "de1994"  | "de94"  | "1994"  | "94" |
            "de1994g" | "de94g" | "1994g" | "94g" => Ok(DEMethod::DE1994),
            "de1994t" | "de94t" | "1994t" | "94t" => Ok(DEMethod::DE1994T),
            "decmc"   | "decmc1"| "cmc1"  | "cmc" => Ok(DEMethod::DECMC1),
            "decmc2"  | "cmc2"                    => Ok(DEMethod::DECMC2),
            _ => {
                eprintln!("Invalid Method: '{}'. Using default: {}", s, DEMethod::default());
                Ok(DEMethod::default())
            }
        }
    }
}

impl fmt::Display for DEMethod {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}

fn delta_e_1976(lab_0: &LabValue, lab_1: &LabValue) -> f64 {
    //! DeltaE 1976. Basic euclidian distance formula.
    ( (lab_0.l - lab_1.l).powi(2) + (lab_0.a - lab_1.a).powi(2) + (lab_0.b - lab_1.b).powi(2) ).sqrt()
}

fn delta_e_1994(lab_0: &LabValue, lab_1: &LabValue, textiles: bool) -> f64 {
    let delta_l = lab_0.l - lab_1.l;
    let chroma_0 = (lab_0.a.powi(2) + lab_0.b.powi(2)).sqrt();
    let chroma_1 = (lab_1.a.powi(2) + lab_1.b.powi(2)).sqrt();
    let delta_chroma = chroma_0 - chroma_1;
    let delta_a = lab_0.a - lab_1.a;
    let delta_b = lab_0.b - lab_1.b;
    let delta_hue = (delta_a.powi(2) + delta_b.powi(2) - delta_chroma.powi(2)).sqrt();

    struct K {
        kl: f64,
        k1: f64,
        k2: f64,
    }

    let k = if textiles {
        K {kl: 2.0, k1: 0.048, k2: 0.014}
    } else {
        K {kl: 1.0, k1: 0.045, k2: 0.015}
    };

    let s_l = 1.0;
    let s_c = 1.0 + k.k1 * chroma_0;
    let s_h = 1.0 + k.k2 * chroma_0;

    (   (delta_l / k.kl * s_l).powi(2)
      + (delta_chroma / s_c).powi(2)
      + (delta_hue / s_h).powi(2)
    ).sqrt()
}

fn get_h_prime(a: f64, b: f64) -> f64 {
    let mut h_prime = b.atan2(a).to_degrees();
    if h_prime < 0.0 {
        h_prime += 360.0;
    }
    h_prime
}

fn delta_e_2000(lab_0: &LabValue, lab_1: &LabValue) -> f64 {
    //! DeltaE 2000. This is a ridiculously complicated formula.
    let chroma_0 = (lab_0.a.powi(2) + lab_0.b.powi(2)).sqrt();
    let chroma_1 = (lab_1.a.powi(2) + lab_1.b.powi(2)).sqrt();

    let c_bar = (chroma_0 + chroma_1) / 2.0;

    let g = 0.5 * (1.0 - ( c_bar.powi(7) / (c_bar.powi(7) + 25_f64.powi(7)) ).sqrt());

    let a_prime_0 = lab_0.a * (1.0 + g);
    let a_prime_1 = lab_1.a * (1.0 + g);

    let c_prime_0 = (a_prime_0.powi(2) + lab_0.b.powi(2)).sqrt();
    let c_prime_1 = (a_prime_1.powi(2) + lab_1.b.powi(2)).sqrt();

    let l_bar_prime = (lab_0.l + lab_1.l)/2.0;
    let c_bar_prime = (c_prime_0 + c_prime_1) / 2.0;

    let h_prime_0 = get_h_prime(a_prime_0, lab_0.b);
    let h_prime_1 = get_h_prime(a_prime_1, lab_1.b);

    let h_bar_prime = if (h_prime_0 - h_prime_1).abs() > 180.0 {
        if (h_prime_0 - h_prime_1) < 360.0 {
            (h_prime_0 + h_prime_1 + 360.0) / 2.0
        } else {
            (h_prime_0 + h_prime_1 - 360.0) / 2.0
        }
    } else {
        (h_prime_0 + h_prime_1) / 2.0
    };

    let t = 1.0 - 0.17 * ((      h_bar_prime - 30.0).to_radians()).cos()
                + 0.24 * ((2.0 * h_bar_prime       ).to_radians()).cos()
                + 0.32 * ((3.0 * h_bar_prime +  6.0).to_radians()).cos()
                - 0.20 * ((4.0 * h_bar_prime - 63.0).to_radians()).cos();
    
    let mut delta_h = h_prime_1 - h_prime_0;
    if delta_h > 180.0 && h_prime_1 <= h_prime_0 {
        delta_h += 360.0;
    } else if delta_h > 180.0 {
        delta_h -= 360.0;
    };

    let delta_l_prime = lab_1.l - lab_0.l;
    let delta_c_prime = c_prime_1 - c_prime_0;
    let delta_h_prime = 2.0 * (c_prime_0 * c_prime_1).sqrt() * (delta_h.to_radians() / 2.0).sin();

    let s_l = 1.0 + (
              (0.015 * (l_bar_prime - 50.0).powi(2))
            / (20.00 + (l_bar_prime - 50.0).powi(2)).sqrt()
        );
    let s_c = 1.0 + 0.045 * c_bar_prime;
    let s_h = 1.0 + 0.015 * c_bar_prime * t;
    
    let delta_theta = 30.0 * (-((h_bar_prime - 275.0)/25.0).powi(2)).exp();
    let r_c =  2.0 * (c_bar_prime.powi(7)/(c_bar_prime.powi(7) + 25_f64.powi(7))).sqrt();
    let r_t = -(r_c * (2.0 * delta_theta.to_radians()).sin());

    let k_l = 1.0;
    let k_c = 1.0;
    let k_h = 1.0;

    let de2000 = (
        (delta_l_prime/(k_l*s_l)).powi(2)
      + (delta_c_prime/(k_c*s_c)).powi(2)
      + (delta_h_prime/(k_h*s_h)).powi(2)
      + (r_t * (delta_c_prime/(k_c*s_c)) * (delta_h_prime/(k_h*s_h)))
    ).sqrt();

    de2000
}

fn delta_e_cmc(lab0: &LabValue, lab1 :&LabValue, tolerance_l: f64, tolerance_c: f64) -> f64 {
    let chroma_0 = (lab0.a.powi(2) + lab0.b.powi(2)).sqrt();
    let chroma_1 = (lab1.a.powi(2) + lab1.b.powi(2)).sqrt();
    let delta_c = chroma_0 - chroma_1;

    let delta_l = lab0.l - lab1.l;
    let delta_a = lab0.a - lab1.a;
    let delta_b = lab0.b - lab1.b;

    let delta_h = (delta_a.powi(2) + delta_b.powi(2) - delta_c.powi(2)).sqrt();

    let s_l = if lab0.l < 16.0 {
        0.511
    } else {
        (0.040975 * lab0.l) / (1.0 + (0.01765 * lab0.l))
    };

    let s_c = ((0.0638 * chroma_0) / (1.0 + (0.0131 * chroma_0))) + 0.638;

    let h = lab0.b.atan2(lab0.a).to_degrees();

    let h_1 = if h >= 0.0 {
        h
    } else {
        h + 360.0
    };

    let f = (chroma_0.powi(4) / (chroma_0.powi(4) + 1900.0)).sqrt();

    let t = if 164.0 <= h_1 && h_1 <= 345.0 {
        0.56 + (0.2 * (h_1 + 168.0).to_radians().cos()).abs()
    } else {
        0.36 + (0.4 * (h_1 + 35.0).to_radians().cos()).abs()
    };

    let s_h = s_c * (f * t + 1.0 - f);

    let decmc = (
        (delta_l / (tolerance_l * s_l)).powi(2) +
        (delta_c / (tolerance_c * s_c)).powi(2) +
        (delta_h / s_h).powi(2)
    ).sqrt();

    decmc
}